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Reflection due to inhomogeneity, utt = c
2
uxx

Consider the second order wave equation
in the form

ut = vx

vt = c2ux

with solution

u(x, t) = r(x − ct) + `(x + ct)

v(x, t) = c[−r(x − ct) + `(x + ct)].

Two regions

c(x) =
c1, x < 0

c2, x ≥ 0

Assume incident wave from left, none
from right.

Interface conditions:

u1(0, t) = u2(0, t) ⇒ r1 + `1 = r2

v1(0, t) = v2(0, t) ⇒ c1(−r1 + `1) = c2(−r2)

Reflection ratio:

ρ =
`1

r1
=

c1 − c2

c1 + c2
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Reflection due to inhomogeneity, utt = c
2
uxx, example

Experiment - ’Box scheme’

160 gridpoints on [0, 1)

t ∈ [0, 0.9]

∆t = 0.01

c(x) = {1, x < 0.66; 1/2, x ≥ 0.66}
u(x, t) = exp(−202(x − t − 1/4)2)

ρ =
1/2

1 + 1/2
= 1/3
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Grid-induced reflections, ut = −cux, example

Consider the right-running wave equation
ut = −cux.
Central difference

u̇j =
−c

2h
(uj+1 − uj−1)

Numerical experiment

100 grid points on [0,1) periodic

h1/h2 = 1/3

τ = 0.02

t ∈ [0, 2]

Same initial condition.
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Vichnevetsky’s analysis (1981)

Time Fourier transform:

u(t, x) =
∞

−∞

û(ω, x)eiωt dω

The right-running wave equation becomes

iω û(ω, x) = −c ûx(ω, x)

with exact solution

û(ω, x + h) = exp(
−ihω

c
) û(ω, x).

Time-transformed central differences

iωûj =
−c

2h
(ûj+1 − ûj−1)

Difference recursion

ûj+1 + i2hωc ûj − ûj−1 = 0

with roots

R, L = − ihω

c
± 1 − h2ω2

c2
= eiΘR,L

and solution

ûj = r̂j + ˆ̀
j , r̂j = Rj r̂0, ˆ̀

j = Lj ˆ̀
0.
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Vichnevetsky’s analysis (1981)

Central differences for the first order wave
equation support both left- and right-
running solutions.

Time-transformed central differences
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(ûj+1 − ûj−1)
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Vichnevetsky’s analysis (1981)

Consider a mesh

xj =
jh1, j < 0

jh2, j > 0

Assume a right-running incident wave in
x < 0, no left-running wave in x > 0. At

x = 0, let u
(1)
0 = u

(2)
0 :

r̂
(1)
0 + ˆ̀(1)

0 = r̂
(2)
0

Furthermore,

û−1 = R(h1ω)−1r̂
(1)
0 + L(h1ω)−1 ˆ̀(1)

0

û1 = R(h2ω)r̂
(2)
0 .

Inserting these in the central difference
formula for û0, the reflection ratio is

ρ =
ˆ̀(1)
0

r̂
(1)
0

=
ν1 − ν2

ν1 + ν2

where

ν1,2 = c 1 − h1,2 ω

c

2

are the discrete group velocities in (x<0)
and (x>0).
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Grid-induced reflections, ut = −cux, example

Instead consider
Box scheme

1

2
(u̇j+1 + u̇j) =

−c

∆x
(uj+1 − uj)

No discernable reflections.

A similar analysis proves this is so, fol-
lowing from a scalar propagation function
(single root).

However, it is also immediate from the dis-
persion relation . . .
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Grid-induced reflections, ut = −cux, dispersion relation

Dispersion relations, central and box
schemes

Ascher & McLachlan (2003) showed that
the box scheme has a dispersion relation
which is conjugate to that the true disper-
sion relation for any first order PDE. In
particular this implies that group velocity
always has the proper sign.
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Grid-induced reflections, utt = c
2
uxx, dispersion relation

But that is not the end of the story...

For the second order wave equation, both
left- and right-running waves are admissi-
ble.

Both central (3 pt.) and the box schemes
have monotone branches.

Yet. . .
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Grid-induced reflections, utt = c
2
uxx, example

Numerical experiment

160 grid points on [0,1) periodic

h1/h2 = 1/3

τ = 0.01

t ∈ [0, 1]

Same initial condition.
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Box scheme analysis, utt = c
2
uxx

Wave equation as a first order system

ut = v

ux = w

vt = c2wx

Box scheme semi-discretization

(u̇j+1 + u̇j)/2 = (vj+1 + vj)/2

(uj+1 − uj)/h = (wj+1 + wj)/2

(v̇j+1 + v̇j)/2 = c2(wj+1 − wj)/h

Properties (Reich):

Discrete conservation laws for energy and momentum

Multisymplectic

Generalizing Vichnevetsky’s analysis to this case:
Time-transformation, eliminate v̂j and solve for ûj+1, ŵj+1

ûj+1

ŵj+1
= Φ(hω)

ûj

ŵj
, Φ(hω) =

1−h2ω2/4
1+h2ω2/4

hω2

1+h2ω2/4

h
1+h2ω2/4

1−h2ω2/4

1+h2ω2/4
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Box scheme analysis

Diagonalizing Φ gives

ûj+1

ŵj+1
= Φ(hω)

ûj

ŵj
, Φ(hω) = X(ω)D(hω)X(ω)−1

where

D(hω) = diag (L(hω), R(hω)) , L(hω), R(hω) =
1 − h2ω2/4 ± ihω

1 + h2ω2/4

and

X =

�

iω −iω

1 1

�

= X(ω), independent of h (the eigenspace of the PDE)

Left and right moving solutions are given by

ˆ̀
j+1

r̂j+1
= X(ω)−1 ûj+1

ŵj+1
=

L(hω)j+1 ˆ̀
0

R(hω)j+1r̂0
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Box scheme analysis

Across a jump in grid spacing from h1 to h2 at x0, we have, for the box scheme

û1

ŵ1
= Φ(h2ω)Φ(h1ω)

û−1

ŵ−1
= X(ω)D(h2ω)D(h1ω)X(ω)−1 û−1

ŵ−1
,

that is
ˆ̀
1 = L(h2ω)L(h1ω)ˆ̀−1, r̂1 = R(h2ω)R(h1ω)r̂−1

Left- and right-running waves remain decoupled.

Note that the group velocities in the two domains are not equal, so Vichnevetsky’s
formula for the reflection ratio does not apply here.
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Runge-Kutta space discretizations

The absence of grid-induced reflections
for the Box scheme is due to the commu-
tativity of diagonalization and discretiza-
tion, which holds for any Runge-Kutta
method (but not for partitioned R-K meth-
ods).

Thus, any Runge-Kutta spatial discretiza-
tion of a system of linear first-order wave
equations will be free of grid-induced re-
flections.

For example, upwind differencing . . .
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Extensions, Nonlinear problems

The Landau-Lifshitz equation:

mt = m× (mxx +Ω0), m(x, t) ∈ R
3.

Numerical experiment

160 grid points on [0, 1), periodic

h1/h2 = 1/3

τ = 0.2

[Soliton solution] (Tjon & Wright
1977), m1 component

Central

Discretization of wave equations and grid-induced reflections – p.16/19
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Extensions, Higher spatial dimensions

2D wave equation utt = c2(uxx + uyy).
Numerical experiment

80 × 80 grid points on [0, 1)2, double periodic

h1/h2 = 1/7 in each dimension

τ = 0.02

t ∈ [0,
√

2]

Plane wave with velocity (−1/
√

2,−1/
√

2) with Gaussian profile

[Central differences] [Box Scheme] [Error Box Scheme]
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Extensions, Non-reflecting boundary conditions in 2D

2D wave equation ut = −c(ux + uy).
Numerical experiment

50 × 50 grid points on [0, 1)2

Dirichlet conditions on x = 0 and y = 0

τ = 0.03

t ∈ [0, 3.6]

Plane wave with velocity (1/3, 2/3) with Gaussian profile

[Evolution] [Error propagation]
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Summary

We have shown that in particular the box scheme and in general Runge-Kutta spatial
discretizations for first order linear wave equations avoid the spurious reflections due to
variations in grid spacing that plague multistep spatial discretizations.

Numerical experiments suggest that this holds also for nonlinear problems and in higher
dimensions.

The End
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