Factoring, Lattices and the NP-hardness of the Shortest Vector Problem

Daniele Micciancio

UC San Diego

May 2021

Factoring

Theorem (Fundamental Theorem of Arithmetic)

Every integer greater than 1 can be represented (uniquely) as the product of prime numbers.
(Euclid, Elements Book VII \& IX, c. 300 BC)

- Factoring problem: given N find its prime factors
- Special case: factor $N=p \cdot q$
- Hardest case in practice
- Basis of the RSA cryptosystem (Rivest, Shamir, Adleman, 1977), (Cooks, 1973)
- Classic problem in cryptography
- No known polynomial time algorithm
- Efficiently solvable in quantum polynomial time (Shor, 1994)

Shortest Lattice Vectors

Theorem (Convex Body Theorem)
Any symmetric convex body $\mathcal{B} \subset \mathbb{R}^{n}$ of volume vol $(\mathcal{B})>2^{n}$ contains a nonzero integer vector $x \in \mathbb{Z}^{n} \backslash\{0\}$

- Equivalent lattice formulation: any lattice $\mathbf{B Z}^{n}$ contains a short nonzero vector $\mathbf{B x}$
- Different convex bodies give different norm bounds:
- $\|\mathbf{B x}\|_{\infty} \leq|\operatorname{det}(\mathbf{B})|^{1 / n}$
- $\|\mathbf{B} \mathbf{x}\|_{2} \leq \sqrt{n} \cdot|\operatorname{det}(\mathbf{B})|^{1 / n}$
- ...
- Shortest Vector Problem (SVP): given a lattice basis B, find a short(est) nonzero lattice vector $\mathbf{B x}$. $\left(\lambda_{1}=\|\mathbf{B} \mathbf{x}\|\right.$.)

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP ${ }_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B x}$ (with $\mathbf{x} \in \mathbb{Z}^{k}$) of length (at most) $\|\mathbf{B x}\| \leq \gamma \lambda_{1}$

Definition (DecisionSVP ${ }_{\gamma}$, informal)
Approximate the value of λ_{1}, without finding a short vector.

Factoring vs SVP

- Factoring:
- Unlikely to be NP-hard (subexponential algorithms, quantum polynomial time)
- Conjectured not in (classic) polynomial time
- SVP (Euclidean norm)
- LLL (Lenstra, Lestra, Lovasz, 1982) solves it "in practice" in relatively small dimension (<50)
- Conjectured to be solvable in polynomial time through the 1980s and early 1990s
- NP-hardness (under deterministic reductions): still an open problem!

Prime numbers lattice (Schnorr, 1991)

- Use lattice algorithms (e.g., LLL) to factor numbers
- Map the multiplicative structure of the integers to the additive structure of a lattice

$$
\begin{aligned}
& \mathbf{B}= {\left[\begin{array}{ccc}
\sqrt{\ln p_{1}} & & \\
& \ddots & \\
& & \sqrt{\ln p_{n}} \\
\alpha \log p_{1} & \cdots & \alpha \log p_{n}
\end{array}\right] } \\
& \sum_{i} e_{i} \log p_{i}= \\
&=\log \prod_{i} p_{i}^{e_{i}}
\end{aligned}
$$

- Use LLL to find "smooth congruences"
- Factoring method based on the Quadratic Sieve (Pomerance, 1981). See Leo's talk for details.

From Factoring Algorithm to NP-hardness proof

- (Schnorr 1991) Use prime number lattice to (heuristically) factor numbers via lattice reduction
- (Adleman 1995) Attempt to give a rigorous proof that factoring reduces to SVP
- Maybe SVP is not NP-hard
- Can we prove it is at least as hard as factoring?
- Attempt to turn Schnorr's algorithm into a formal reduction
- (Ajtai 1998) SVP is NP-hard under randomized reduction
- Started from Adleman unfinished manuscript
- Same goal: reduce factoring to SVP via prime number lattice
- Ended up proving that SVP is NP-hard under randomized reduction
- Proof is highly technical, uses many additional ideas and technique
- Much follow up work on simplifying and strengthening Ajtai's proof

NP-hardness of SVP

- NP-hard in the ℓ_{∞} norm (Van Emde Boas, 1981)
- NP-hardness in ℓ_{2} : long standing open problem
- NP-hard under randomized reductions [Ajtai 1998]
- Improved to $\gamma<\sqrt{2}$ [Micciancio 1998]
- Improved to any constant γ [Khot 2001]
- Improvements and simplifications [Haviv, Regev 2007]
- Improvements and simplifications [Micciancio 2012]
- All use randomized reductions

Open problem
Prove the NP-hardness of SVP in ℓ_{2} norm under deterministic reductions

- Randomness used only to construct locally dense lattice.

Closest Vector Problem

Definition (Closest Vector Problem, CVP ${ }_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t}, find a lattice vector $\mathbf{B x}$ within distance $\|\mathbf{B x}-\mathbf{t}\| \leq \gamma \mu$ from the target

NP-hardness of CVP

- NP-hard in any ℓ_{p} norm (van Emde Boas, 1981)
- CVP': Hard even if solution is in $\mathbf{B}\{0,1\}^{n}$
- NP-hard to approximate for any constant factor (Arora, Babai, Stern, Sweedyk, 1993) and more (Dinur, Kindler, Raz, Safra, 2003)
- CVP with preprocessing (CVPP):
- Still NP-hard (Micciancio 2001), even to approximate (Feige, M. 2002), (Regev 2003), (Alekhnovich, Khot, Kindler, Vishnoi, 2011)
- the lattice \mathbf{B} is fixed and can be pre-processed arbitrarily
- NP-hard instance is encoded just in the target vector!
- SVP reduced to CVP (Goldreich, M., Safra, Seifert, 1999)
- Question: Can you reduce CVP to SVP?

Reducing CVP to SVP

- Goal: find lattice point $\mathbf{v} \in \mathcal{L}(\mathbf{B})$ closest to \mathbf{t}
- Idea: find shortest vector $\mathbf{w} \in \mathcal{L}([\mathbf{B}, \mathbf{t}])$
- If $\mathbf{w}=\mathbf{t}-\mathbf{B x}$, then $\mathbf{v}=\mathbf{B x}$ is closest to t.
- Problem: what if $\lambda(\mathcal{L}(\mathbf{B}))<\operatorname{dist}(\mathbf{t}, \mathcal{L}(\mathbf{B}))$?
- Example:

$$
\begin{gathered}
\mathcal{L}(\mathbf{B})=\mathbb{Z}^{n} \quad \mathbf{t}=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \\
\lambda(\mathcal{L}(\mathbf{B}))=1<\frac{\sqrt{n}}{2}
\end{gathered}
$$

Repairing the reduction

- Goal (CVP'): find lattice point $\mathbf{v} \in \mathbf{B}\{0,1\}^{n} \subset \mathcal{L}(\mathbf{B})$ closest to \mathbf{t}
- Embed \mathbf{B} and \mathbf{t} in higher dimension so that
- $\lambda(\mathcal{L}(\mathbf{B}))$ gets large
- t remains close to $\mathcal{L}(\mathbf{B})$

$$
\mathbf{B} \Longrightarrow\left[\begin{array}{c}
\mathrm{BTL} \\
\mathrm{~L}
\end{array}\right] \quad \mathbf{t} \Longrightarrow\left[\begin{array}{l}
\mathrm{t} \\
\mathrm{~s}
\end{array}\right]
$$

Locally Dense Lattice:

- $\lambda(\mathcal{L}(\mathbf{L}))>d$
- $|\mathcal{L}(\mathbf{L}) \cap \mathcal{B}(\mathbf{s}, r)|$ is large
- $r<d<2 r$
- $\{0,1\}^{n} \subset \mathbf{T}(\mathcal{L}(\mathbf{L}) \cap \mathcal{B}(\mathbf{s}, r)) \subset \mathbb{Z}^{n}$

Locally Dense Lattice in ℓ_{∞}

Trivial Construction:

- $\mathcal{L}(\mathbf{L})=\mathbb{Z}^{n}$
- $d=\lambda(\mathcal{L}(\mathbf{L}))=1$
- $\mathbf{s}=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$,
- $r>\frac{1}{2}=d / 2$
- $\mathcal{L}(\mathbf{L}) \cap \mathcal{B}_{\infty}(\mathbf{s}, r)=\{0,1\}^{n}$

Locally Dense Lattices in ℓ_{2}

$$
\mathbf{L}=\left[\begin{array}{ccc}
\sqrt{\ln p_{1}} & & \\
& \ddots & \\
& & \sqrt{\ln p_{n}} \\
\alpha \log p_{1} & \cdots & \alpha \log p_{n}
\end{array}\right] \quad \mathbf{s}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\alpha \ln \beta
\end{array}\right] \quad \begin{gathered}
\lambda \approx \sqrt{2 \beta} \\
r \approx \sqrt{\beta}
\end{gathered}
$$

- p_{1}, \ldots, p_{n} odd primes, $\alpha=\beta^{1-\epsilon}$
- Multiplicative structure of $\prod p_{i} \in \mathbb{Z}$ maps to additive structure of $\mathcal{L}(\mathbf{B})$
- if $\left[\beta, \beta+\beta^{\epsilon}\right]$ contains many products $\prod_{i \in I} p_{i}$, then $\mathcal{B}(\mathbf{s}, r)$ contains many lattice vectors $\sum_{i \in I} \mathbf{b}_{i}$.

Locally Dense Lattices in ℓ_{2} (cont.)

Conjecture

For all $\epsilon>0$, and (large enouh) n, the interval $\left[n, n+n^{\epsilon}\right]$ contains a square free number with prime factors $<\log ^{O(1)} n$

- How to choose β :
- Deterministically, assuming conjecture
- At random: works with high probability
- Alternative construction based on BCH codes, but still randomized [Micciancio 2012]
- Open problem: Find unconditional deterministic construction

Packing density and Hermite's factor

- Hermite's factor:

$$
\gamma(\mathcal{L})=\left(\frac{\lambda_{1}(\mathcal{L})}{\operatorname{det}(\mathcal{L})^{1 / n}}\right)^{2}
$$

- Minkowski's theorem: $\gamma(\mathcal{L}) \leq O(n)$
- Use lattice $\mathcal{L} \subset \mathbb{R}^{n}$ to pack \mathbb{R}^{n} with disjoint balls $\mathbf{v}+\mathcal{B} \cdot r$ of radius $r=\lambda_{1} / 2$ and center $\mathbf{v} \in \mathcal{L}$
- Packing density:

$$
\operatorname{vol}(\mathcal{B} \cdot r)=\frac{\operatorname{vol}(\mathcal{B})\left(\lambda_{1} / 2\right)^{n}}{\operatorname{det}(\mathcal{L})}=\operatorname{vol}(\mathcal{B})\left(\frac{\sqrt{\gamma(\mathcal{L})}}{2}\right)^{n}
$$

- Minkowki's theorem: density cannot be higher than 1
- Dense lattices: $\gamma(\mathcal{L})$ close to Minkowski's bound $O(n)$

Global Density vs Local Density

- Fix a radius $r=\lambda_{1} / c$ for some constant $c \geq 1$
- Global density: expected number of lattice points in $\mathbf{s}+\mathcal{B} \cdot r$ when $\mathbf{s} \in \mathbb{R}^{n}$ is chosen uniformly at random (modulo \mathcal{L})
- Must be <1 if $c>2$
- Can be >1 if $c<2$
- Can be exponentially large if $c<\sqrt{2}$
- The global density of a lattice is precisely $\operatorname{vol}(\mathcal{B r}) / \operatorname{det}(\mathcal{L})$
- If $\gamma(\mathcal{L})$ is close to Minkowski's bound, and $c>0.5$, then the global density is exponentially large
- There exists a "locally dense" center \mathbf{s} such that $\mathbf{s}+\mathcal{B} \cdot r$ contains exponentially many lattice points

How to find a "locally dense" center?

- Goal: find a center such that $\mathbf{s}+\mathcal{B r}$ contains many lattice points, for some $r<\lambda_{1} / \sqrt{2}$
- Choose \mathbf{s} at random within $\mathcal{B r} \subset \mathbb{R}^{n}$
- $\mathbf{0}$ is always in $\mathbf{s}+\mathcal{B r}$
- By symmetry, $\mathbf{s} \in \mathbb{R}^{n} / \mathcal{L}$ is chosen with probability proportional to the number of lattice points in $\mathbf{s}+\mathcal{B r}$

The geometry of the prime numbers lattice

Prime number lattice:

$$
\mathbf{B}=\left[\begin{array}{ccc}
\sqrt{\ln p_{1}} & & \\
& \ddots & \\
& & \sqrt{\ln p_{n}} \\
\alpha \log p_{1} & \cdots & \alpha \log p_{n}
\end{array}\right]
$$

"Complexity of Lattice Problems" (M., Goldwasser, 2002), Prop. 5.9
Theorem (Lemma 5.3)

$$
\lambda \geq 2 \ln \alpha
$$

Theorem (Prop. 5.9)

$$
\operatorname{det}(\mathrm{B})=\sqrt{\left(1+\alpha^{2} \sum_{k} \ln p_{k}\right) \prod_{k} \ln p_{k}}
$$

Density of the prime numbers lattice

- $\lambda \geq 2 \ln \alpha$
- $\operatorname{det}(\mathbf{B})=\sqrt{\left(1+\alpha^{2} \sum_{k} \ln p_{k}\right) \prod_{k} \ln p_{k}}$
- Hermite factor is maximized setting p_{1}, \ldots, p_{n} to the first n prime numbers, and $\alpha \approx e^{n / 2}$
- Hermite factor $\gamma=\Omega(n / \log n)$ close to Minkowski's bound
- The prime number lattice is globally dense
- Lattice points in a small ball centered around $(0, \ldots, 0, \alpha b)$ corresponds to subset-products of $\left\{p_{1}, \ldots, p_{n}\right\}$ close to b
- Lattice density corresponds to density of square-free p_{n}-smooth numbers in small intervals

Smooth numbers and derandomization

Conjecture

For all sufficiently large n, the interval $\left[n, n+n^{\epsilon}\right]$ contains at least one square-free $(\log n)^{O(1)}$-smooth number.

- If the smooth number conjecture is true, then SVP is NP-hard under deterministic reductions.
- Conjecture is easy to prove for $\epsilon=1$
- $\epsilon=0.5$ is considered a serious barrier in mathematics
- SVP NP-hardness needs conjecture for $\epsilon \ll 0.5$
- Can we find some other locally dense lattice contruction?

Locally Dense Lattices from BCH codes

- $\mathbb{F}=\{0,1\}$: finite field with 2 elements
- \mathbb{F}^{n} vector space with Hamming metric
- Linear codes $C[n, k, d]$: k-dimensional subspaces of \mathbb{F}^{n} with minimum dinstance d
- $($ Extended $) \mathrm{BCH}$ codes $\mathbb{F}^{n}=C_{0} \supset C_{1} \supset \cdots \supset C_{h}$, where $C_{i}\left[n, k_{i}, d_{i}\right]$ for $d_{i} \geq 4^{i}$ and $k_{i} \geq n-(\log n)\left(4^{i} / 2-1\right)$
- Barnes-Sloane lattice (Construction D)

$$
\mathcal{L}=\sum_{i} C_{i} \cdot 2^{h-i}
$$

Theorem

The Barnes-Sloane lattice satisfies $\lambda \geq 2^{h}$ and det $\leq n^{\frac{2}{3}} 4^{h}$.

NP-hardness of SVP using Barnes-Sloane lattice

- (Micciancio 2012) Barnes-Sloane lattice to give alternate proof that SVP is NP-hard under randomized reductions (with one sided error)
- Selection of the dense center still required randomization
- New proof uses special tensoring properties of this lattice to show that SVP is NP-hard to approximate within any constant factor
- NP-hardness proofs based on the prime number lattice stopped working for approximation factors $>\sqrt{2}$
- Other techniques to prove NP-hardess for any constant factor introduced more randomness and two-side error

Locally Dense Codes

A locally dense code consists of

- A linear code $L[h, m, d]$
- A radius $r<d$
- A center s such that

$$
X=\mathcal{B}(\mathbf{s}, r) \cap L
$$

has size $|X| \geq 2^{k}$

Often required also a linear transformation \mathbf{T} such that

$$
\mathbf{T}(X)=\{0,1\}^{k}
$$

Minimum Distance Problem (MDP)

- SVP for codes: find the shortest codeword in a linear code
- NP-hard to solve exactly [Vardy 1996]
- NP-hard to approximate (for any $\gamma \geq 1$) under randomized reductions [Dumer, M., Sudan 1999] using locally dense codes
- Derandomized in [Cheng, Wan 2009] using powerful mathematical tools (Weil's character sum bound on affine line)
- Simplified and extended to asymptotically good codes [Khot, Austrin 2011], but using additional techniques
- Deterministic reduction using locally dense codes [Micciancio, 2014]

Building Locally Dense Codes

- Start from a binary linear code $C[n, k, d]$ with $d / n>1 / \sqrt{6}$.
- Many classic constructions achieve $d \approx n / 2$. E.g., concatenate Reed-Solomon codes over $\mathbb{F}_{2^{h}}$ with Hadamard code.
- Use C to define a binary code $L\left[4 n^{2}, k(k+1) / 2,6 d^{2}\right]$
- Represent $4 n^{2}$-dim vectors by four $n \times n$ matrices

$$
\left(\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}, \mathbf{W}_{4}\right)
$$

- Consider ball of radius $r=n^{2}<6 d^{2}$ centered around

$$
(\mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{U})
$$

where $\mathbf{U}=\mathbf{u u}^{\top}$ is the all 1 matrix.

- If $d \approx n / 2$, then $r \approx \frac{2}{3}\left(6 d^{2}\right)$

Construction

- The code L is the set of all codewords

$$
\mathbf{W}=\left(\mathbf{Y}, \mathbf{Y}+\mathbf{u} \mathbf{y}^{\top}, \mathbf{Y}+\mathbf{y} \mathbf{u}^{\top}, \mathbf{Y}+\mathbf{u} \mathbf{y}^{\top}+\mathbf{y} \mathbf{u}^{\top}\right)
$$

where $\mathbf{Y}=\mathbf{C X C} \mathbf{C}^{\top}$ for some symmetric matrix $\mathbf{X}=\mathbf{X}^{\top} \in \mathbb{F}_{2}^{k \times k}$ and $\mathbf{y}=\operatorname{diagonal}(\mathbf{Y})=\mathbf{C} \cdot \operatorname{diagonal}(\mathbf{X})$.

- Notice: $\mathbf{y}, \operatorname{columns}(\mathbf{Y}), \operatorname{rows}(\mathbf{Y}) \in C[n, k, d]$
- L has block length $4 n^{2}$
- \mathbf{W} is linear in \mathbf{X}
- The dimension is $k(k+1) / 2$
- To be proved:
- the minimum distance is at least $6 d^{2}$
- there are 2^{k} codewords within distance n^{2} from ($\left.\mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{U}\right)$

Decoding Dense Lattices

- Bounded Distance Decoding: CVP when target point \mathbf{t} is within the unique decoding radius $\lambda / 2$
- (Ducas, Pierrot, 2019) give efficient BDD algorithm for prime numbers lattice,
- (Mook, Peikert, 2020) give efficient BDD (and list decoding) algorithm for Barnes-Sloane lattice
- Both lattices previously used for proving NP-hardness of SVP.
- Is there any connection?
- Can the BDD algorithms be used to find the locally dense centers?
- Can you efficiently solve CVP in these or other locally dense lattices?
- Can you solve BDD/CVP in lattices achieving $\gamma(\mathcal{L})=\Omega(n)$? (E.g., Mordell-Weil lattices)

Open Problems

- Reduce factoring to approximate SVP for approximation factors $\gamma>\sqrt{n}$:
- \sqrt{n}-approximate SVP is in NP \cap coNP, and unlikely to be NP-hard
- Is \sqrt{n}-approximate SVP at least as hard as factoring?
- Derandomization of Locally Dense Lattice construction
- Implies NP-hardness of SVP under deterministic reduction, a long standing open problem
- Several deterministic dense lattice constructions
- some are based on linear codes
- Randomness only used to find dense center
- Locally Dense Codes have been successfully derandomized

Want to know more?

- "The shortest vector problem is NP-hard to approximate to within some constant", Micciancio, SIAM J. Computing, 2001.
- "Inapproximability of the Shortest Vector Problem: Toward a deterministic reduction", Micciancio, Theory of Computing, 2012
- "Locally Dense Codes", Micciancio, Computational Complexity Conference, 2014
- "Polynomial time bounded distance decoding near Minkowski's bound in discrete logarithm lattices", Ducas, Pierrot, Des. Codes Cryptogr. 2019
- "Lattice (List) Decoding Near Minkowski's Inequality", Mook, Peikert, arXiv 2020

