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Factoring

Theorem (Fundamental Theorem of Arithmetic)

Every integer greater than 1 can be represented (uniquely) as the product
of prime numbers.

(Euclid, Elements Book VII & IX, c. 300 BC)

Factoring problem: given N find its prime factors

Special case: factor N = p · q
Hardest case in practice
Basis of the RSA cryptosystem (Rivest, Shamir, Adleman, 1977),
(Cooks, 1973)
Classic problem in cryptography

No known polynomial time algorithm

Efficiently solvable in quantum polynomial time (Shor, 1994)
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Shortest Lattice Vectors

Theorem (Convex Body Theorem)

Any symmetric convex body B ⊂ Rn of volume vol(B) > 2n contains a
nonzero integer vector x ∈ Zn \ {0}

(Minkowski, 1889)

Equivalent lattice formulation: any lattice BZn contains a short
nonzero vector Bx

Different convex bodies give different norm bounds:

‖Bx‖∞ ≤ | det(B)|1/n
‖Bx‖2 ≤

√
n · | det(B)|1/n

...

Shortest Vector Problem (SVP): given a lattice basis B, find a
short(est) nonzero lattice vector Bx. (λ1 = ‖Bx‖.)
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Shortest Vector Problem

Definition (Shortest Vector Problem, SVPγ)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ‖Bx‖ ≤ γλ1

2λ1

b1

b2

λ1

Bx = 5b1 − 2b2

Definition (DecisionSVPγ, informal)

Approximate the value of λ1, without finding a short vector.
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Factoring vs SVP

Factoring:

Unlikely to be NP-hard (subexponential algorithms, quantum
polynomial time)
Conjectured not in (classic) polynomial time

SVP (Euclidean norm)

LLL (Lenstra, Lestra, Lovasz, 1982) solves it “in practice” in relatively
small dimension (< 50)
Conjectured to be solvable in polynomial time through the 1980s and
early 1990s
NP-hardness (under deterministic reductions): still an open problem!
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Prime numbers lattice (Schnorr, 1991)

Use lattice algorithms (e.g., LLL) to factor numbers

Map the multiplicative structure of the integers to the additive
structure of a lattice

B =


√

ln p1
. . . √

ln pn
α log p1 · · · α log pn


∑
i

ei log pi = log
∏
i

peii

Use LLL to find “smooth congruences”

Factoring method based on the Quadratic Sieve (Pomerance, 1981).
See Leo’s talk for details.
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From Factoring Algorithm to NP-hardness proof

(Schnorr 1991) Use prime number lattice to (heuristically) factor
numbers via lattice reduction

(Adleman 1995) Attempt to give a rigorous proof that factoring
reduces to SVP

Maybe SVP is not NP-hard
Can we prove it is at least as hard as factoring?
Attempt to turn Schnorr’s algorithm into a formal reduction

(Ajtai 1998) SVP is NP-hard under randomized reduction

Started from Adleman unfinished manuscript
Same goal: reduce factoring to SVP via prime number lattice
Ended up proving that SVP is NP-hard under randomized reduction
Proof is highly technical, uses many additional ideas and technique

Much follow up work on simplifying and strengthening Ajtai’s proof
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NP-hardness of SVP

NP-hard in the `∞ norm (Van Emde Boas, 1981)

NP-hardness in `2: long standing open problem

NP-hard under randomized reductions [Ajtai 1998]

Improved to γ <
√

2 [Micciancio 1998]

Improved to any constant γ [Khot 2001]

Improvements and simplifications [Haviv, Regev 2007]

Improvements and simplifications [Micciancio 2012]

All use randomized reductions

Open problem

Prove the NP-hardness of SVP in `2 norm under deterministic reductions

Randomness used only to construct locally dense lattice.
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Closest Vector Problem

Definition (Closest Vector Problem, CVPγ)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ‖Bx− t‖ ≤ γµ from the target

t
µ 2µ

b1

b2

Bx
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NP-hardness of CVP

NP-hard in any `p norm (van Emde Boas, 1981)

CVP’: Hard even if solution is in B{0, 1}n

NP-hard to approximate for any constant factor (Arora, Babai, Stern,
Sweedyk, 1993) and more (Dinur, Kindler, Raz, Safra, 2003)

CVP with preprocessing (CVPP):

Still NP-hard (Micciancio 2001), even to approximate (Feige, M.
2002), (Regev 2003), (Alekhnovich, Khot, Kindler, Vishnoi, 2011)
the lattice B is fixed and can be pre-processed arbitrarily
NP-hard instance is encoded just in the target vector!

SVP reduced to CVP (Goldreich, M., Safra, Seifert, 1999)

Question: Can you reduce CVP to SVP?
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Reducing CVP to SVP

0

t

BxL(B)

t− Bx

0

t

L(B)

Goal: find lattice point v ∈ L(B)
closest to t

Idea: find shortest vector w ∈ L([B, t])

If w = t−Bx, then v = Bx is closest to
t.

Problem: what if
λ(L(B)) < dist(t,L(B))?

Example:

L(B) = Zn t =

(
1

2
, . . . ,

1

2

)

λ(L(B)) = 1 <

√
n

2
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Repairing the reduction

Goal (CVP’): find lattice point v ∈ B{0, 1}n ⊂ L(B) closest to t

Embed B and t in higher dimension so that

λ(L(B)) gets large
t remains close to L(B)

B =⇒
[
BTL
L

]
t =⇒

[
t
s

]
Locally Dense Lattice:

λ(L(L)) > d

|L(L) ∩ B(s, r)| is large

r < d < 2r

{0, 1}n ⊂ T(L(L) ∩ B(s, r)) ⊂ Zn

s

L(L)
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Locally Dense Lattice in `∞

Trivial Construction:

L(L) = Zn

d = λ(L(L)) = 1

s = (12 , . . . ,
1
2),

r > 1
2 = d/2

L(L) ∩ B∞(s, r) = {0, 1}n

s
r

Zn
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Locally Dense Lattices in `2

L =


√

ln p1
. . . √

ln pn
α log p1 · · · α log pn

 s =


0
...
0

α lnβ

 λ ≈
√

2β
r ≈
√
β

p1, . . . , pn odd primes, α = β1−ε

Multiplicative structure of
∏

pi ∈ Z
maps to additive structure of L(B)

if [β, β + βε] contains many products∏
i∈I pi , then B(s, r) contains many

lattice vectors
∑

i∈I bi .

λ
s

r

L(L)
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Locally Dense Lattices in `2 (cont.)

Conjecture

For all ε > 0, and (large enouh) n, the interval [n, n + nε] contains a
square free number with prime factors < logO(1) n

How to choose β:

Deterministically, assuming conjecture
At random: works with high probability

Alternative construction based on BCH codes, but still randomized
[Micciancio 2012]

Open problem: Find unconditional deterministic construction
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Packing density and Hermite’s factor

Hermite’s factor:

γ(L) =

(
λ1(L)

det(L)1/n

)2

Minkowski’s theorem: γ(L) ≤ O(n)

Use lattice L ⊂ Rn to pack Rn with disjoint balls v + B · r of radius
r = λ1/2 and center v ∈ L
Packing density:

vol(B · r) =
vol(B)(λ1/2)n

det(L)
= vol(B)

(√
γ(L)

2

)n

Minkowki’s theorem: density cannot be higher than 1

Dense lattices: γ(L) close to Minkowski’s bound O(n)
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Global Density vs Local Density

Fix a radius r = λ1/c for some constant c ≥ 1

Global density: expected number of lattice points in s + B · r when
s ∈ Rn is chosen uniformly at random (modulo L)

Must be < 1 if c > 2
Can be > 1 if c < 2
Can be exponentially large if c <

√
2

The global density of a lattice is precisely vol(Br)/ det(L)

If γ(L) is close to Minkowski’s bound, and c > 0.5, then the global
density is exponentially large

There exists a “locally dense” center s such that s + B · r contains
exponentially many lattice points
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How to find a “locally dense” center?

Goal: find a center s such that s + Br contains many lattice points,
for some r < λ1/

√
2

Choose s at random within Br ⊂ Rn

0 is always in s + Br
By symmetry, s ∈ Rn/L is chosen with probability proportional to the
number of lattice points in s + Br
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The geometry of the prime numbers lattice

Prime number lattice:

B =


√

ln p1
. . . √

ln pn
α log p1 · · · α log pn


“Complexity of Lattice Problems” (M., Goldwasser, 2002), Prop. 5.9

Theorem (Lemma 5.3)

λ ≥ 2 lnα

Theorem (Prop. 5.9)

det(B) =

√√√√(1 + α2
∑
k

ln pk

)∏
k

ln pk
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Density of the prime numbers lattice

λ ≥ 2 lnα

det(B) =
√

(1 + α2
∑

k ln pk)
∏

k ln pk

Hermite factor is maximized setting p1, . . . , pn to the first n prime
numbers, and α ≈ en/2

Hermite factor γ = Ω(n/ log n) close to Minkowski’s bound

The prime number lattice is globally dense

Lattice points in a small ball centered around (0, . . . , 0, αb)
corresponds to subset-products of {p1, . . . , pn} close to b

Lattice density corresponds to density of square-free pn-smooth
numbers in small intervals
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Smooth numbers and derandomization

Conjecture

For all sufficiently large n, the interval [n, n + nε] contains at least one
square-free (log n)O(1)-smooth number.

If the smooth number conjecture is true, then SVP is NP-hard under
deterministic reductions.

Conjecture is easy to prove for ε = 1

ε = 0.5 is considered a serious barrier in mathematics

SVP NP-hardness needs conjecture for ε� 0.5

Can we find some other locally dense lattice contruction?
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Locally Dense Lattices from BCH codes

F = {0, 1}: finite field with 2 elements

Fn vector space with Hamming metric

Linear codes C [n, k , d ]: k-dimensional subspaces of Fn with minimum
dinstance d

(Extended) BCH codes Fn = C0 ⊃ C1 ⊃ · · · ⊃ Ch, where Ci [n, ki , di ]
for di ≥ 4i and ki ≥ n − (log n)(4i/2− 1)

Barnes-Sloane lattice (Construction D)

L =
∑
i

Ci · 2h−i

Theorem

The Barnes-Sloane lattice satisfies λ ≥ 2h and det ≤ n
2
3
4h .
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NP-hardness of SVP using Barnes-Sloane lattice

(Micciancio 2012) Barnes-Sloane lattice to give alternate proof that
SVP is NP-hard under randomized reductions (with one sided error)

Selection of the dense center still required randomization

New proof uses special tensoring properties of this lattice to show
that SVP is NP-hard to approximate within any constant factor

NP-hardness proofs based on the prime number lattice stopped
working for approximation factors >

√
2

Other techniques to prove NP-hardess for any constant factor
introduced more randomness and two-side error
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Locally Dense Codes

A locally dense code consists of

A linear code L[h,m, d ]

A radius r < d

A center s such that

X = B(s, r) ∩ L

has size |X | ≥ 2k

d

0

s

Often required also a linear transformation T such that

T(X ) = {0, 1}k
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Minimum Distance Problem (MDP)

SVP for codes: find the shortest codeword in a linear code

NP-hard to solve exactly [Vardy 1996]

NP-hard to approximate (for any γ ≥ 1) under randomized reductions
[Dumer, M., Sudan 1999] using locally dense codes

Derandomized in [Cheng, Wan 2009] using powerful mathematical
tools (Weil’s character sum bound on affine line)

Simplified and extended to asymptotically good codes [Khot, Austrin
2011], but using additional techniques

Deterministic reduction using locally dense codes [Micciancio, 2014]
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Building Locally Dense Codes

Start from a binary linear code C [n, k, d ] with d/n > 1/
√

6.

Many classic constructions achieve d ≈ n/2. E.g., concatenate
Reed-Solomon codes over F2h with Hadamard code.

Use C to define a binary code L[4n2, k(k + 1)/2, 6d2]

Represent 4n2-dim vectors by four n × n matrices

(W1,W2,W3,W4)

Consider ball of radius r = n2 < 6d2 centered around

(O,O,O,U)

where U = uu> is the all 1 matrix.

If d ≈ n/2, then r ≈ 2
3(6d2)
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Construction

The code L is the set of all codewords

W = (Y,Y + uy>,Y + yu>,Y + uy> + yu>)

where Y = CXC> for some symmetric matrix X = X> ∈ Fk×k
2 and

y = diagonal(Y) = C · diagonal(X).

Notice: y,columns(Y), rows(Y) ∈ C [n, k , d ]

L has block length 4n2

W is linear in X

The dimension is k(k + 1)/2

To be proved:

the minimum distance is at least 6d2

there are 2k codewords within distance n2 from (O,O,O,U)
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Decoding Dense Lattices

Bounded Distance Decoding: CVP when target point t is within the
unique decoding radius λ/2

(Ducas, Pierrot, 2019) give efficient BDD algorithm for prime
numbers lattice,

(Mook, Peikert, 2020) give efficient BDD (and list decoding)
algorithm for Barnes-Sloane lattice

Both lattices previously used for proving NP-hardness of SVP.

Is there any connection?
Can the BDD algorithms be used to find the locally dense centers?
Can you efficiently solve CVP in these or other locally dense lattices?
Can you solve BDD/CVP in lattices achieving γ(L) = Ω(n)? (E.g.,
Mordell-Weil lattices)
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Open Problems

Reduce factoring to approximate SVP for approximation factors
γ >
√
n:√
n-approximate SVP is in NP ∩ coNP, and unlikely to be NP-hard

Is
√
n-approximate SVP at least as hard as factoring?

Derandomization of Locally Dense Lattice construction

Implies NP-hardness of SVP under deterministic reduction, a long
standing open problem
Several deterministic dense lattice constructions
some are based on linear codes
Randomness only used to find dense center
Locally Dense Codes have been successfully derandomized
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Want to know more?

“The shortest vector problem is NP-hard to approximate to within
some constant”, Micciancio, SIAM J. Computing, 2001.

“Inapproximability of the Shortest Vector Problem: Toward a
deterministic reduction”, Micciancio, Theory of Computing, 2012

“Locally Dense Codes”, Micciancio, Computational Complexity
Conference, 2014

“Polynomial time bounded distance decoding near Minkowski’s bound
in discrete logarithm lattices”, Ducas, Pierrot, Des. Codes Cryptogr.
2019

“Lattice (List) Decoding Near Minkowski’s Inequality”, Mook,
Peikert, arXiv 2020
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