Factoring, Lattices and the NP-hardness of the Shortest Vector Problem

Daniele Micciancio

UC San Diego

May 2021

Theorem (Fundamental Theorem of Arithmetic)

Every integer greater than 1 can be represented (uniquely) as the product of prime numbers.

(Euclid, Elements Book VII & IX, c. 300 BC)

- Factoring problem: given N find its prime factors
- Special case: factor $N = p \cdot q$
 - Hardest case in practice
 - Basis of the RSA cryptosystem (Rivest, Shamir, Adleman, 1977), (Cooks, 1973)
 - Classic problem in cryptography
- No known polynomial time algorithm
- Efficiently solvable in quantum polynomial time (Shor, 1994)

Theorem (Convex Body Theorem)

Any symmetric convex body $\mathcal{B} \subset \mathbb{R}^n$ of volume $vol(\mathcal{B}) > 2^n$ contains a nonzero integer vector $x \in \mathbb{Z}^n \setminus \{0\}$

(Minkowski, 1889)

- Equivalent lattice formulation: any lattice BZⁿ contains a short nonzero vector Bx
- Different convex bodies give different norm bounds:

•
$$\|\mathbf{Bx}\|_{\infty} \le |\det(\mathbf{B})|^{1/n}$$

• $\|\mathbf{Bx}\|_2 \le \sqrt{n} \cdot |\det(\mathbf{B})|^{1/n}$

Shortest Vector Problem (SVP): given a lattice basis B, find a short(est) nonzero lattice vector Bx. (λ₁ = ||Bx||.)

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \gamma \lambda_1$

Definition (DecisionSVP $_{\gamma}$, informal)

Approximate the value of λ_1 , without finding a short vector.

Daniele Micciancio (UC San Diego)

Factoring, Lattices and NP-hardness

Factoring:

- Unlikely to be NP-hard (subexponential algorithms, quantum polynomial time)
- Conjectured not in (classic) polynomial time
- SVP (Euclidean norm)
 - LLL (Lenstra, Lestra, Lovasz, 1982) solves it "in practice" in relatively small dimension (<50)
 - Conjectured to be solvable in polynomial time through the 1980s and early 1990s
 - NP-hardness (under deterministic reductions): still an open problem!

Prime numbers lattice (Schnorr, 1991)

- Use lattice algorithms (e.g., LLL) to factor numbers
- Map the multiplicative structure of the integers to the additive structure of a lattice

$$\mathbf{B} = \begin{bmatrix} \sqrt{\ln p_1} & & \\ & \ddots & \\ & \sqrt{\ln p_n} \\ \alpha \log p_1 & \cdots & \alpha \log p_n \end{bmatrix}$$
$$\sum_i e_i \log p_i = \log \prod_i p_i^{e_i}$$

- Use LLL to find "smooth congruences"
- Factoring method based on the Quadratic Sieve (Pomerance, 1981). See Leo's talk for details.

From Factoring Algorithm to NP-hardness proof

- (Schnorr 1991) Use prime number lattice to (heuristically) factor numbers via lattice reduction
- (Adleman 1995) Attempt to give a rigorous proof that factoring reduces to SVP
 - Maybe SVP is not NP-hard
 - Can we prove it is at least as hard as factoring?
 - Attempt to turn Schnorr's algorithm into a formal reduction
- (Ajtai 1998) SVP is NP-hard under randomized reduction
 - Started from Adleman unfinished manuscript
 - Same goal: reduce factoring to SVP via prime number lattice
 - Ended up proving that SVP is NP-hard under randomized reduction
 - Proof is highly technical, uses many additional ideas and technique
- Much follow up work on simplifying and strengthening Ajtai's proof

NP-hardness of SVP

- NP-hard in the ℓ_∞ norm (Van Emde Boas, 1981)
- NP-hardness in ℓ_2 : long standing open problem
- NP-hard under randomized reductions [Ajtai 1998]
- Improved to $\gamma < \sqrt{2}$ [Micciancio 1998]
- Improved to any constant γ [Khot 2001]
- Improvements and simplifications [Haviv, Regev 2007]
- Improvements and simplifications [Micciancio 2012]
- All use randomized reductions

Open problem

Prove the NP-hardness of SVP in ℓ_2 norm under deterministic reductions

• Randomness used only to construct locally dense lattice.

Definition (Closest Vector Problem, CVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \gamma \mu$ from the target

- NP-hard in any ℓ_p norm (van Emde Boas, 1981)
- CVP': Hard even if solution is in $\mathbf{B}\{0,1\}^n$
- NP-hard to approximate for any constant factor (Arora, Babai, Stern, Sweedyk, 1993) and more (Dinur, Kindler, Raz, Safra, 2003)
- CVP with preprocessing (CVPP):
 - Still NP-hard (Micciancio 2001), even to approximate (Feige, M. 2002), (Regev 2003), (Alekhnovich, Khot, Kindler, Vishnoi, 2011)
 - $\bullet\,$ the lattice B is fixed and can be pre-processed arbitrarily
 - NP-hard instance is encoded just in the target vector!
- SVP reduced to CVP (Goldreich, M., Safra, Seifert, 1999)
- Question: Can you reduce CVP to SVP?

Reducing CVP to SVP

- Goal: find lattice point $\textbf{v} \in \mathcal{L}(\textbf{B})$ closest to t
- Idea: find shortest vector $\bm{w} \in \mathcal{L}([\bm{B}, \bm{t}])$

• If
$$\mathbf{w} = \mathbf{t} - \mathbf{B}\mathbf{x}$$
, then $\mathbf{v} = \mathbf{B}\mathbf{x}$ is closest to \mathbf{t} .

• Problem: what if $\lambda(\mathcal{L}(\mathbf{B})) < dist(\mathbf{t}, \mathcal{L}(\mathbf{B}))$?

• Example:

$$\mathcal{L}(\mathbf{B}) = \mathbb{Z}^n$$
 $\mathbf{t} = \left(\frac{1}{2}, \dots, \frac{1}{2}\right)$
 $\lambda(\mathcal{L}(\mathbf{B})) = 1 < \frac{\sqrt{n}}{2}$

Repairing the reduction

- Goal (CVP'): find lattice point $\mathbf{v} \in \mathbf{B}\{0,1\}^n \subset \mathcal{L}(\mathbf{B})$ closest to \mathbf{t}
- $\bullet\,$ Embed B and t in higher dimension so that
 - $\lambda(\mathcal{L}(\mathbf{B}))$ gets large
 - $\bullet~t$ remains close to $\mathcal{L}(B)$

$$\mathbf{B} \Longrightarrow \begin{bmatrix} \mathbf{B}\mathsf{T}\mathsf{L} \\ \mathbf{L} \end{bmatrix} \qquad \mathbf{t} \Longrightarrow \begin{bmatrix} \mathbf{t} \\ \mathbf{s} \end{bmatrix}$$

Locally Dense Lattice:

- $\lambda(\mathcal{L}(\mathbf{L})) > d$
- $|\mathcal{L}(\mathsf{L}) \cap \mathcal{B}(\mathbf{s}, r)|$ is large
- *r* < *d* < 2*r*
- $\{0,1\}^n \subset \mathsf{T}(\mathcal{L}(\mathsf{L}) \cap \mathcal{B}(\mathbf{s},r)) \subset \mathbb{Z}^n$

Trivial Construction:

•
$$\mathcal{L}(\mathsf{L}) = \mathbb{Z}^n$$

•
$$d = \lambda(\mathcal{L}(\mathsf{L})) = 1$$

•
$$\mathbf{s} = (\frac{1}{2}, \dots, \frac{1}{2}),$$

•
$$r > \frac{1}{2} = d/2$$

•
$$\mathcal{L}(\mathsf{L}) \cap \mathcal{B}_{\infty}(\mathsf{s}, r) = \{0, 1\}^n$$

Locally Dense Lattices in ℓ_2

- p_1, \ldots, p_n odd primes, $\alpha = \beta^{1-\epsilon}$
- Multiplicative structure of ∏ p_i ∈ ℤ maps to additive structure of ℒ(B)
- if $[\beta, \beta + \beta^{\epsilon}]$ contains many products $\prod_{i \in I} p_i$, then $\mathcal{B}(\mathbf{s}, r)$ contains many lattice vectors $\sum_{i \in I} \mathbf{b}_i$.

Conjecture

For all $\epsilon > 0$, and (large enouh) n, the interval $[n, n + n^{\epsilon}]$ contains a square free number with prime factors $< \log^{O(1)} n$

- How to choose β :
 - Deterministically, assuming conjecture
 - At random: works with high probability
- Alternative construction based on BCH codes, but still randomized [Micciancio 2012]
- Open problem: Find unconditional deterministic construction

Packing density and Hermite's factor

• Hermite's factor:

$$\gamma(\mathcal{L}) = \left(rac{\lambda_1(\mathcal{L})}{\det(\mathcal{L})^{1/n}}
ight)^2$$

• Minkowski's theorem: $\gamma(\mathcal{L}) \leq O(n)$

- Use lattice $\mathcal{L} \subset \mathbb{R}^n$ to pack \mathbb{R}^n with disjoint balls $\mathbf{v} + \mathcal{B} \cdot r$ of radius $r = \lambda_1/2$ and center $\mathbf{v} \in \mathcal{L}$
- Packing density:

$$\mathsf{vol}(\mathcal{B} \cdot r) = rac{\mathsf{vol}(\mathcal{B})(\lambda_1/2)^n}{\mathsf{det}(\mathcal{L})} = \mathsf{vol}(\mathcal{B})\left(rac{\sqrt{\gamma(\mathcal{L})}}{2}
ight)^n$$

- Minkowki's theorem: density cannot be higher than 1
- Dense lattices: $\gamma(\mathcal{L})$ close to Minkowski's bound O(n)

Global Density vs Local Density

- Fix a radius $r = \lambda_1/c$ for some constant $c \ge 1$
- Global density: expected number of lattice points in $\mathbf{s} + \mathcal{B} \cdot r$ when $\mathbf{s} \in \mathbb{R}^n$ is chosen uniformly at random (modulo \mathcal{L})
 - Must be < 1 if c > 2
 - Can be > 1 if c < 2
 - Can be exponentially large if $c < \sqrt{2}$
- The global density of a lattice is precisely $\operatorname{vol}(\mathcal{B}r)/\det(\mathcal{L})$
- If γ(L) is close to Minkowski's bound, and c > 0.5, then the global density is exponentially large
- There exists a "locally dense" center **s** such that $\mathbf{s} + \mathcal{B} \cdot r$ contains exponentially many lattice points

- Goal: find a center **s** such that $\mathbf{s} + \mathcal{B}r$ contains many lattice points, for some $r < \lambda_1/\sqrt{2}$
- Choose **s** at random within $\mathcal{B}r \subset \mathbb{R}^n$
- **0** is always in $\mathbf{s} + \mathcal{B}r$
- By symmetry, s ∈ ℝⁿ/L is chosen with probability proportional to the number of lattice points in s + Br

The geometry of the prime numbers lattice

Prime number lattice:

$$\mathbf{B} = \begin{bmatrix} \sqrt{\ln p_1} & & \\ & \ddots & \\ & & \sqrt{\ln p_n} \\ \alpha \log p_1 & \cdots & \alpha \log p_n \end{bmatrix}$$

"Complexity of Lattice Problems" (M., Goldwasser, 2002), Prop. 5.9 Theorem (Lemma 5.3)

 $\lambda \geq 2\ln \alpha$

Theorem (Prop. 5.9)

$$\det(\mathsf{B}) = \sqrt{\left(1 + \alpha^2 \sum_k \ln p_k\right) \prod_k \ln p_k}$$

Daniele Micciancio (UC San Diego)

Factoring, Lattices and NP-hardness

Density of the prime numbers lattice

- $\lambda \geq 2 \ln \alpha$
- det(**B**) = $\sqrt{(1 + \alpha^2 \sum_k \ln p_k) \prod_k \ln p_k}$
- Hermite factor is maximized setting p_1, \ldots, p_n to the first *n* prime numbers, and $\alpha \approx e^{n/2}$
- Hermite factor $\gamma = \Omega(n/\log n)$ close to Minkowski's bound
- The prime number lattice is globally dense
- Lattice points in a small ball centered around (0,..., 0, αb) corresponds to subset-products of {p₁,..., p_n} close to b
- Lattice density corresponds to density of square-free *p_n*-smooth numbers in small intervals

Conjecture

For all sufficiently large n, the interval $[n, n + n^{\epsilon}]$ contains at least one square-free $(\log n)^{O(1)}$ -smooth number.

- If the smooth number conjecture is true, then SVP is NP-hard under deterministic reductions.
- Conjecture is easy to prove for $\epsilon = 1$
- $\epsilon = 0.5$ is considered a serious barrier in mathematics
- SVP NP-hardness needs conjecture for $\epsilon \ll 0.5$
- Can we find some other locally dense lattice contruction?

Locally Dense Lattices from BCH codes

- $\mathbb{F}=\{0,1\}:$ finite field with 2 elements
- \mathbb{F}^n vector space with Hamming metric
- Linear codes C[n, k, d]: k-dimensional subspaces of 𝔽ⁿ with minimum dinstance d
- (Extended) BCH codes $\mathbb{F}^n = C_0 \supset C_1 \supset \cdots \supset C_h$, where $C_i[n, k_i, d_i]$ for $d_i \ge 4^i$ and $k_i \ge n (\log n)(4^i/2 1)$
- Barnes-Sloane lattice (Construction D)

$$\mathcal{L} = \sum_{i} C_{i} \cdot 2^{h-i}$$

Theorem

The Barnes-Sloane lattice satisfies $\lambda \ge 2^h$ and det $\le n^{\frac{2}{3}4^h}$.

NP-hardness of SVP using Barnes-Sloane lattice

- (Micciancio 2012) Barnes-Sloane lattice to give alternate proof that SVP is NP-hard under randomized reductions (with one sided error)
- Selection of the dense center still required randomization
- New proof uses special tensoring properties of this lattice to show that SVP is NP-hard to approximate within any constant factor
- NP-hardness proofs based on the prime number lattice stopped working for approximation factors $>\sqrt{2}$
- Other techniques to prove NP-hardess for any constant factor introduced more randomness and two-side error

Locally Dense Codes

A locally dense code consists of

- A linear code L[h, m, d]
- A radius *r* < *d*
- A center **s** such that

 $X = \mathcal{B}(\mathbf{s}, r) \cap L$

has size $|X| \ge 2^k$

Often required also a linear transformation ${\boldsymbol{\mathsf{T}}}$ such that

$$\mathbf{T}(X) = \{0,1\}^k$$

Minimum Distance Problem (MDP)

- SVP for codes: find the shortest codeword in a linear code
- NP-hard to solve exactly [Vardy 1996]
- NP-hard to approximate (for any $\gamma \ge 1$) under randomized reductions [Dumer, M., Sudan 1999] using locally dense codes
- Derandomized in [Cheng, Wan 2009] using powerful mathematical tools (Weil's character sum bound on affine line)
- Simplified and extended to asymptotically good codes [Khot, Austrin 2011], but using additional techniques
- Deterministic reduction using locally dense codes [Micciancio, 2014]

Building Locally Dense Codes

- Start from a binary linear code C[n, k, d] with $d/n > 1/\sqrt{6}$.
 - Many classic constructions achieve d ≈ n/2. E.g., concatenate Reed-Solomon codes over F_{2^h} with Hadamard code.
- Use C to define a binary code $L[4n^2, k(k+1)/2, 6d^2]$
 - Represent $4n^2$ -dim vectors by four $n \times n$ matrices

$$(\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3, \mathbf{W}_4)$$

• Consider ball of radius $r = n^2 < 6d^2$ centered around

 $(\boldsymbol{O},\boldsymbol{O},\boldsymbol{O},\boldsymbol{U})$

where $\mathbf{U} = \mathbf{u}\mathbf{u}^{\top}$ is the all 1 matrix.

• If $d \approx n/2$, then $r \approx \frac{2}{3}(6d^2)$

Construction

• The code L is the set of all codewords

$$\mathbf{W} = (\mathbf{Y}, \mathbf{Y} + \mathbf{u}\mathbf{y}^\top, \mathbf{Y} + \mathbf{y}\mathbf{u}^\top, \mathbf{Y} + \mathbf{u}\mathbf{y}^\top + \mathbf{y}\mathbf{u}^\top)$$

where $\mathbf{Y} = \mathbf{C}\mathbf{X}\mathbf{C}^{\top}$ for some symmetric matrix $\mathbf{X} = \mathbf{X}^{\top} \in \mathbb{F}_{2}^{k \times k}$ and $\mathbf{y} = \text{diagonal}(\mathbf{Y}) = \mathbf{C} \cdot \text{diagonal}(\mathbf{X})$.

- Notice: \mathbf{y} ,columns(\mathbf{Y}), rows(\mathbf{Y}) $\in C[n, k, d]$
- L has block length $4n^2$
- W is linear in X
- The dimension is k(k+1)/2
- To be proved:
 - the minimum distance is at least $6d^2$
 - there are 2^k codewords within distance n² from (**0**, **0**, **0**, **U**)

- Bounded Distance Decoding: CVP when target point t is within the unique decoding radius $\lambda/2$
- (Ducas, Pierrot, 2019) give efficient BDD algorithm for prime numbers lattice,
- (Mook, Peikert, 2020) give efficient BDD (and list decoding) algorithm for Barnes-Sloane lattice
- Both lattices previously used for proving NP-hardness of SVP.
 - Is there any connection?
 - Can the BDD algorithms be used to find the locally dense centers?
 - Can you efficiently solve CVP in these or other locally dense lattices?
 - Can you solve BDD/CVP in lattices achieving $\gamma(\mathcal{L}) = \Omega(n)$? (E.g., Mordell-Weil lattices)

- Reduce factoring to approximate SVP for approximation factors $\gamma > \sqrt{n}$:
 - \sqrt{n} -approximate SVP is in $NP \cap coNP$, and unlikely to be NP-hard
 - Is \sqrt{n} -approximate SVP at least as hard as factoring?
- Derandomization of Locally Dense Lattice construction
 - Implies NP-hardness of SVP under deterministic reduction, a long standing open problem
 - Several deterministic dense lattice constructions
 - some are based on linear codes
 - Randomness only used to find dense center
 - Locally Dense Codes have been successfully derandomized

- "The shortest vector problem is NP-hard to approximate to within some constant", Micciancio, SIAM J. Computing, 2001.
- "Inapproximability of the Shortest Vector Problem: Toward a deterministic reduction", Micciancio, Theory of Computing, 2012
- *"Locally Dense Codes"*, Micciancio, Computational Complexity Conference, 2014
- "Polynomial time bounded distance decoding near Minkowski's bound in discrete logarithm lattices", Ducas, Pierrot, Des. Codes Cryptogr. 2019
- *"Lattice (List) Decoding Near Minkowski's Inequality"*, Mook, Peikert, arXiv 2020