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History

Factoring integers and computing discrete
logarithms via diophantine approximation [Schnorr 1991]
Factoring and Lattice Reduction [Adleman 1995]
Average Time Fast SVP and CVP Algorithms:
Factoring Integers in Polynomial Time [Schnorr 2009]
A note on integer factorization using lattices [Vera 2010]
Fast Factoring Integers by SVP Algorithms [Schnorr 2021]

This talk
Not about [Schnorr 2021], but about the general approach.

Reviews of [Schnorr 2021]
https://github.com/lducas/SchnorrGate

https://crypto.stackexchange.com/questions/88582

https://twitter.com/inf_0_/status/1367376526300172288
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Factoring: the Quadratic Sieve [Pomerance, 1981]

Notation : ≡ for congruence modulo N

Goal: Find a non-trivial1 solution to X 2 ≡ Y 2

⇒ (X − Y )(X + Y ) ≡ 0
⇒ gcd(X ± Y ,N) is a non-trivial factor of N

A two-steps process:
Collect Relations
Linear Algebra

1X 6≡ ±Y mod N
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Step 1: Relation Collection

Define a factor basis: F = {p|p is primes, p ≤ B}
Repeat:

Pick random X , compute Z = X 2 mod N
Use trial division to write Z =

∏
pei

i (pi ∈ F)
If successful, store the relation X 2 ≡

∏
pei

i

Until B relations are collected

The complexity trade-off

Increasing B improves the success probability of each trial
But more relations are needed
The optimum is at B = exp(Õ(

√
log N)) = LN(1/2)
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Step 2: Linear Algebra

We have collected relations:

X 2
1 ≡ p1

e1,1 p2
e1,2 p3

e1,3 · · ·
X 2

2 ≡ p1
e2,1 p2

e2,2 p3
e2,3 · · ·

X 2
3 ≡ p1

e3,1 p2
e3,2 p3

e3,3 · · ·
...

...
...

...
... . . .

Combine the above to make all exponents even integers

Done by solving a linear system over F2

Obtain a solution to

X 2 ≡ Y 2 mod N
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Optimizing Relation Collection

X 2 mod N is as large as N for random X
Making it smaller would improve the success of trial division

Could we aim for X 2 mod N that are significantly smaller ?

Choose X ≈
√

N, so that X 2 ≈ N
If X =

√
N + ε, with ε�

√
N, then:

X 2 ≡ 2ε
√

N + ε2

The complexity gain
Improves the hidden constant in exp(Õ(

√
log N)) = LN(1/2)
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Aiming Better [Schnorr 1991]

A Relaxation
The left-hand-side needs not be square, B-smooth can do as well:

p1
e′

1p2
e′

2p3
e′

3 · · · ≡ p1
e1p2

e2p3
e3 · · ·

1 ≡ p1
e1−e′

1p2
e2−e′

2p3
e3−e′

3 · · ·

Our New Goal
Find positive exponents (e′1, e′2, e′3, . . .) such that

p1
e′

1p2
e′

2p3
e′

3 · · · ≈ N

This is an (approximate) knapsack problem !

e′1 ln p1 + e′2 ln p2 + e′3 ln p3 + · · · ≈ ln N
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Aiming with lattices [Schnorr 1991]

Choose a constant C to rewrite the knapsack as a lattice CVP

ln p1
ln p2

ln p3
. . .

ln pn
C ln p1 C ln p2 C ln p3 · · · C ln pn


·


e′

1
e′

2
e′

3
...

e′
n

 ≈


0
0
0
...
0

C ln N


Knapsack 6= CVP
The lattice solution (e′1, e′2, e′3, . . .) may not have positive exponents

But that might be OK !

u/v ≈ N ⇒ u ≈ vN, therefore S = u − vN may be small
Quality degrades as v =

∏
e′

i <0 p−ei
i gets larger
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Attempting Average-Case Analysis

Lattice Pitfalls

The lattice is not full dimensional apply due projections
Gaussian Heuristic seems invalid for certain C
The `2 norm is a bit inadequate `1 more relevant
Naive predictions of `2/`1 can also fail

Trial Division Pitfall

B-Smoothness probability of S = u − vN lower than expected

pi |u ∨ pi |v ⇒ pi 6 |S

Mind the Variants

Most papers force B = pn or B = 1. Here: B unconstrained.
The diagonal part of the lattice may vary as well.
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Experiments

10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

Lattice dimension n

lo
gS

/
lo

gN

N: 50 bits
N: 100 bits
N: 200 bits
N: 400 bits
QS baseline

The size of S roughly dictates the cost of the non-lattice steps
For factoring a 100-bits N, to beat QS at the non-lattice steps, we
should need a lattice dimension of at least n ≥ 50.
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My two Cents

It’s a deep and brilliant idea . . . that doesn’t seem to work /
A solid average-case complexity analysis is still missing

and appears quite challenging . . .
It nevertheless found applications beyond factoring

An attempt at proving SVP ≥ Factoring [Adleman 1995]
Proof of NP-hardness of SVP [Ajtai 1998, Micciancio 1998]
Idea reused for in relation to the abc-conjecture [Bright 2014]
Idea reused in a Module-LLL Algorithm [LPSW 2019]
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