Léo Ducas

CWI, Amsterdam, The Netherlands

CWI

RISC SEminar, May $20^{\text {TH }}, 2021$

History

■ Factoring integers and computing discrete logarithms via diophantine approximation

- Factoring and Lattice Reduction
[Schnorr 1991]
[Adleman 1995]
■ Average Time Fast SVP and CVP Algorithms: Factoring Integers in Polynomial Time
■ A note on integer factorization using lattices
- Fast Factoring Integers by SVP Algorithms
[Schnorr 2009]
[Vera 2010]
[Schnorr 2021]

History

- Factoring integers and computing discrete logarithms via diophantine approximation
- Factoring and Lattice Reduction
[Schnorr 1991]
- Average Time Fast SVP and CVP Algorithms: Factoring Integers in Polynomial Time
■ A note on integer factorization using lattices
- Fast Factoring Integers by SVP Algorithms [Adleman 1995]
[Schnorr 2009]
[Vera 2010]
[Schnorr 2021]

This talk

Not about [Schnorr 2021], but about the general approach.

Reviews of [Schnorr 2021]

■ https://github.com/lducas/SchnorrGate
■ https://crypto.stackexchange.com/questions/88582
■ https://twitter.com/inf_0_/status/1367376526300172288

Factoring: the Quadratic Sieve

Notation : \equiv for congruence modulo N
Goal: Find a non-trivial ${ }^{1}$ solution to $X^{2} \equiv Y^{2}$
$\Rightarrow(X-Y)(X+Y) \equiv 0$
$\Rightarrow \operatorname{gcd}(X \pm Y, N)$ is a non-trivial factor of N

Factoring: the Quadratic Sieve

Notation : \equiv for congruence modulo N
Goal: Find a non-trivial ${ }^{1}$ solution to $X^{2} \equiv Y^{2}$
$\Rightarrow(X-Y)(X+Y) \equiv 0$
$\Rightarrow \operatorname{gcd}(X \pm Y, N)$ is a non-trivial factor of N
A two-steps process:

- Collect Relations
- Linear Algebra

Step 1: Relation Collection

■ Define a factor basis: $\mathcal{F}=\{p \mid p$ is primes, $p \leq B\}$

- Repeat:

Step 1: Relation Collection

■ Define a factor basis: $\mathcal{F}=\{p \mid p$ is primes, $p \leq B\}$

- Repeat:
- Pick random X, compute $Z=X^{2} \bmod N$
- Use trial division to write $Z=\prod p_{i}^{e_{i}}$
- If successful, store the relation $X^{2} \equiv \prod p_{i}^{e_{i}}$

■ Until B relations are collected

The complexity trade-off

- Increasing B improves the success probability of each trial
- But more relations are needed
- The optimum is at $B=\exp (\tilde{O}(\sqrt{\log N}))$ $=L_{N}(1 / 2)$

Step 2: Linear Algebra

■ We have collected relations:

$$
\begin{array}{cccccc}
X_{1}^{2} & \equiv & p_{1}{ }^{e_{1,1}} & p_{2}{ }^{e_{1,2}} & p_{3}{ }^{e_{1,3}} & \ldots \\
X_{2}^{2} & \equiv & p_{1}{ }^{e_{2,1}} & p_{2}{ }^{e_{2,2}} & p_{3}{ }^{e_{2,3}} & \ldots \\
X_{3}^{2} & \equiv & p_{1}{ }^{e_{3,1}} & p_{2}{ }^{e_{3,2}} & p_{3}{ }^{e_{3,3}} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

- Combine the above to make all exponents even integers

Step 2: Linear Algebra

■ We have collected relations:

$$
\begin{array}{cccccc}
X_{1}^{2} & \equiv & p_{1} e_{1,1}^{e_{1,1}} & p_{2}{ }^{e_{1,2}} & p_{3}{ }^{e_{1,3}} & \ldots \\
X_{2}^{2} & \equiv & p_{1} e_{2,1} & p_{2} e_{2,2} & p_{3} e_{2,3} & \ldots \\
X_{3}^{2} & \equiv & p_{1}{ }^{e_{3,1}} & p_{2}{ }^{e_{3,2}} & p_{3} e_{3,3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

- Combine the above to make all exponents even integers

■ Done by solving a linear system over \mathbb{F}_{2}

Step 2: Linear Algebra

■ We have collected relations:

$$
\begin{array}{cccccc}
X_{1}^{2} & \equiv & p_{1} e_{1,1} & p_{2}{ }^{e_{1,2}} & p_{3}{ }^{e_{1,3}} & \ldots \\
X_{2}^{2} & \equiv & p_{1} e_{2,1} & p_{2} e_{2,2} & p_{3} e_{2,3} & \ldots \\
X_{3}^{2} & \equiv & p_{1}^{e_{3,1}} & p_{2}{ }^{e_{3,2}} & p_{3} e_{3,3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

■ Combine the above to make all exponents even integers
■ Done by solving a linear system over \mathbb{F}_{2}
■ Obtain a solution to

$$
X^{2} \equiv Y^{2} \bmod N
$$

Optimizing Relation Collection

$X^{2} \bmod N$ is as large as N for random X
Making it smaller would improve the success of trial division

Optimizing Relation Collection

$X^{2} \bmod N$ is as large as N for random X

Making it smaller would improve the success of trial division
Could we aim for $X^{2} \bmod N$ that are significantly smaller ?
Choose $X \approx \sqrt{N}$, so that $X^{2} \approx N$
If $X=\sqrt{N}+\epsilon$, with $\epsilon \ll \sqrt{N}$, then:

$$
X^{2} \equiv 2 \epsilon \sqrt{N}+\epsilon^{2}
$$

Optimizing Relation Collection

$X^{2} \bmod N$ is as large as N for random X

Making it smaller would improve the success of trial division
Could we aim for $X^{2} \bmod N$ that are significantly smaller ?
Choose $X \approx \sqrt{N}$, so that $X^{2} \approx N$
If $X=\sqrt{N}+\epsilon$, with $\epsilon \ll \sqrt{N}$, then:

$$
X^{2} \equiv 2 \epsilon \sqrt{N}+\epsilon^{2}
$$

The complexity gain

Improves the hidden constant in $\exp (\tilde{O}(\sqrt{\log N})) \quad=L_{N}(1 / 2)$

Aiming Better

A Relaxation

The left-hand-side needs not be square, B-smooth can do as well:

$$
\begin{aligned}
p_{1}{ }^{e_{1}^{\prime}} p_{2}{ }^{e_{2}^{\prime}} p_{3}^{e_{3}^{\prime}} \cdots & \equiv p_{1}{ }^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \ldots \\
1 & \equiv p_{1}{ }^{e_{1}-e_{1}^{\prime}} p_{2}{ }^{e_{2}-e_{2}^{\prime}} p_{3}^{e_{3}-e_{3}^{\prime}} \ldots
\end{aligned}
$$

Our New Goal

Find positive exponents $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots\right)$ such that

$$
p_{1}{ }^{e_{1}^{\prime}} p_{2}{ }_{2}^{e_{2}^{\prime}} p_{3} e_{3}^{\prime} \ldots \approx N
$$

Aiming Better

A Relaxation

The left-hand-side needs not be square, B-smooth can do as well:

$$
\begin{aligned}
p_{1}{ }^{e_{1}^{\prime}} p_{2}{ }^{e_{2}^{\prime}} p_{3}^{e_{3}^{\prime}} \cdots & \equiv p_{1}{ }^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \ldots \\
1 & \equiv p_{1}{ }^{e_{1}-e_{1}^{\prime}} p_{2}{ }^{e_{2}-e_{2}^{\prime}} p_{3}^{e_{3}-e_{3}^{\prime}} \ldots
\end{aligned}
$$

Our New Goal

Find positive exponents $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots\right)$ such that

$$
p_{1}{ }_{1}^{e_{1}^{\prime}} p_{2}{ }^{\prime}{ }_{2}^{\prime} p_{3} e_{3}^{\prime} \ldots \approx N
$$

This is an (approximate) knapsack problem !

$$
e_{1}^{\prime} \ln p_{1}+e_{2}^{\prime} \ln p_{2}+e_{3}^{\prime} \ln p_{3}+\cdots \approx \ln N
$$

Aiming with lattices

Choose a constant C to rewrite the knapsack as a lattice CVP

$$
\left[\begin{array}{ccccc}
\ln p_{1} & & & & \\
& \ln p_{2} & & & \\
& & \ln p_{3} & & \\
& & & \ddots & \\
C \ln p_{1} & C \ln p_{2} & C \ln p_{3} & \cdots & C \ln p_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime} \\
\vdots \\
e_{n}^{\prime}
\end{array}\right] \approx\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
C \ln N
\end{array}\right]
$$

Knapsack \neq CVP

The lattice solution ($e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots$) may not have positive exponents

Aiming with lattices

Choose a constant C to rewrite the knapsack as a lattice CVP

$$
\left[\begin{array}{ccccc}
\ln p_{1} & & & & \\
& \ln p_{2} & & & \\
& & \ln p_{3} & & \\
& & & \ddots & \\
C \ln p_{1} & C \ln p_{2} & C \ln p_{3} & \cdots & C \ln p_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime} \\
\vdots \\
e_{n}^{\prime}
\end{array}\right] \approx\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
C \ln N
\end{array}\right]
$$

Knapsack \neq CVP

The lattice solution ($e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots$) may not have positive exponents

But that might be OK!

- $u / v \approx N \Rightarrow u \approx v N$, therefore $S=u-v N$ may be small
- Quality degrades as $v=\prod_{e_{i}^{\prime}<0} p_{i}^{-e_{i}}$ gets larger

Attempting Average-Case Analysis

Lattice Pitfalls

- The lattice is not full dimensional
- Gaussian Heuristic seems invalid
- The ℓ_{2} norm is a bit inadequate
apply due projections for certain C
ℓ_{1} more relevant
- Naive predictions of ℓ_{2} / ℓ_{1} can also fail

Trial Division Pitfall

- B-Smoothness probability of $S=u-v N$ lower than expected

$$
p_{i}\left|u \vee p_{i}\right| v \Rightarrow p_{i} \not \backslash S
$$

Mind the Variants

■ Most papers force $B=p_{n}$ or $B=1$. Here: B unconstrained.

- The diagonal part of the lattice may vary as well.

Experiments

Experiments

The size of S roughly dictates the cost of the non-lattice steps
For factoring a 100 -bits N, to beat QS at the non-lattice steps, we should need a lattice dimension of at least $n \geq 50$.

My two Cents

- It's a deep and brilliant idea ... that doesn't seem to work $)^{-}$
- A solid average-case complexity analysis is still missing and appears quite challenging ...
- It nevertheless found applications beyond factoring

My two Cents

- It's a deep and brilliant idea . . . that doesn't seem to work $;$

■ A solid average-case complexity analysis is still missing and appears quite challenging ...

- It nevertheless found applications beyond factoring
- An attempt at proving SVP \geq Factoring [Adleman 1995]
- Proof of NP-hardness of SVP [Ajtai 1998, Micciancio 1998]
- Idea reused for in relation to the abc-conjecture [Bright 2014]
- Idea reused in a Module-LLL Algorithm
[LPSW 2019]

