

Léo Ducas

CWI, Amsterdam, The Netherlands

RISC Seminar, May 20^{th} , 2021

(b) (4) (3) (4)

History

- Factoring integers and computing discrete logarithms via diophantine approximation
- Factoring and Lattice Reduction
- Average Time Fast SVP and CVP Algorithms: Factoring Integers in Polynomial Time
- A note on integer factorization using lattices
- Fast Factoring Integers by SVP Algorithms

[Schnorr 1991] [Adleman 1995]

[Schnorr 2009] [Vera 2010] [Schnorr 2021]

• • = • • = •

History

 Factoring integers and computing discrete logarithms via diophantine approximation 	[Schnorr 1991]
 Factoring and Lattice Reduction 	[Adleman 1995]
 Average Time Fast SVP and CVP Algorithms: Factoring Integers in Polynomial Time 	[Schnorr 2009]
A note on integer factorization using lattices	[Vera 2010]
 Fast Factoring Integers by SVP Algorithms 	[Schnorr 2021]

This talk

Not about [Schnorr 2021], but about the general approach.

Reviews of [Schnorr 2021]

- https://github.com/lducas/SchnorrGate
- https://crypto.stackexchange.com/questions/88582
- https://twitter.com/inf_0_/status/1367376526300172288

イロト イボト イヨト イヨト

э

Notation : \equiv for congruence modulo *N*

Goal: Find a non-trivial¹ solution to $X^2 \equiv Y^2$

 $\Rightarrow (X - Y)(X + Y) \equiv 0$ $\Rightarrow \gcd(X \pm Y, N) \text{ is a non-trivial factor of } N$

ь « Эь « Эь

Notation : \equiv for congruence modulo *N*

Goal: Find a non-trivial¹ solution to $X^2 \equiv Y^2$

 $\Rightarrow (X - Y)(X + Y) \equiv 0$ $\Rightarrow \gcd(X \pm Y, N) \text{ is a non-trivial factor of } N$

A two-steps process:

- Collect Relations
- Linear Algebra

 $^{1}X \not\equiv \pm Y \mod N$

Step 1: Relation Collection

Define a factor basis: F = {p|p is primes, p ≤ B}
Repeat:

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Step 1: Relation Collection

- Define a **factor basis**: $\mathcal{F} = \{p | p \text{ is primes}, p \leq B\}$
- Repeat:
 - Pick random X, compute $Z = X^2 \mod N$
 - Use trial division to write $Z = \prod p_i^{e_i}$ $(p_i \in \mathcal{F})$
 - If successful, store the relation $X^2 \equiv \prod p_i^{e_i}$

Until B relations are collected

The complexity trade-off

- Increasing B improves the success probability of each trial
- But more relations are needed

The optimum is at
$$B = \exp(\tilde{O}(\sqrt{\log N}))$$
 $= L_N(1/2)$

We have collected relations:

$$\begin{array}{rcl} X_1^2 &\equiv& p_1^{e_{1,1}} & p_2^{e_{1,2}} & p_3^{e_{1,3}} & \cdots \\ X_2^2 &\equiv& p_1^{e_{2,1}} & p_2^{e_{2,2}} & p_3^{e_{2,3}} & \cdots \\ X_3^2 &\equiv& p_1^{e_{3,1}} & p_2^{e_{3,2}} & p_3^{e_{3,3}} & \cdots \\ \vdots &\vdots &\vdots &\vdots &\vdots & \ddots \end{array}$$

Combine the above to make all exponents even integers

∃ ► < ∃ ►</p>

We have collected relations:

$$\begin{array}{rcl} X_1^2 &\equiv& p_1^{e_{1,1}} & p_2^{e_{1,2}} & p_3^{e_{1,3}} & \cdots \\ X_2^2 &\equiv& p_1^{e_{2,1}} & p_2^{e_{2,2}} & p_3^{e_{2,3}} & \cdots \\ X_3^2 &\equiv& p_1^{e_{3,1}} & p_2^{e_{3,2}} & p_3^{e_{3,3}} & \cdots \\ \vdots &\vdots &\vdots &\vdots &\vdots & \ddots \end{array}$$

- Combine the above to make all exponents even integers
- \blacksquare Done by solving a linear system over \mathbb{F}_2

We have collected relations:

$$\begin{array}{rcl} X_1^2 &\equiv& p_1^{e_{1,1}} & p_2^{e_{1,2}} & p_3^{e_{1,3}} & \cdots \\ X_2^2 &\equiv& p_1^{e_{2,1}} & p_2^{e_{2,2}} & p_3^{e_{2,3}} & \cdots \\ X_3^2 &\equiv& p_1^{e_{3,1}} & p_2^{e_{3,2}} & p_3^{e_{3,3}} & \cdots \\ \vdots &\vdots &\vdots &\vdots &\vdots & \ddots \end{array}$$

- Combine the above to make all exponents even integers
- Done by solving a linear system over \mathbb{F}_2
- Obtain a solution to

$$X^2 \equiv Y^2 \mod N$$

$X^2 \mod N$ is as large as N for random X

Making it smaller would improve the success of trial division

• • = • • =

$X^2 \mod N$ is as large as N for random X

Making it smaller would improve the success of trial division

Could we aim for $X^2 \mod N$ that are significantly smaller ?

Choose $X \approx \sqrt{N}$, so that $X^2 \approx N$

If $X = \sqrt{N} + \epsilon$, with $\epsilon \ll \sqrt{N}$, then:

$$X^2 \equiv 2\epsilon \sqrt{N} + \epsilon^2$$

$X^2 \mod N$ is as large as N for random X

Making it smaller would improve the success of trial division

Could we aim for $X^2 \mod N$ that are significantly smaller ?

Choose $X \approx \sqrt{N}$, so that $X^2 \approx N$

If $X = \sqrt{N} + \epsilon$, with $\epsilon \ll \sqrt{N}$, then:

$$X^2 \equiv 2\epsilon \sqrt{N} + \epsilon^2$$

The complexity gain

Improves the hidden constant in $\exp(\tilde{O}(\sqrt{\log N})) = L_N(1/2)$

伺下 イヨト イヨト

[Schnorr 1991]

A Relaxation

The left-hand-side needs not be square, B-smooth can do as well:

$$p_1^{e_1'} p_2^{e_2'} p_3^{e_3'} \cdots \equiv p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots$$
$$1 \equiv p_1^{e_1 - e_1'} p_2^{e_2 - e_2'} p_3^{e_3 - e_3'} \cdots$$

Our New Goal

Find positive exponents $(e_1', e_2', e_3', \ldots)$ such that

$$p_1^{e_1'}p_2^{e_2'}p_3^{e_3'}\cdots\approx N$$

[Schnorr 1991]

A Relaxation

The left-hand-side needs not be square, B-smooth can do as well:

$$p_1^{e_1'} p_2^{e_2'} p_3^{e_3'} \cdots \equiv p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots$$
$$1 \equiv p_1^{e_1 - e_1'} p_2^{e_2 - e_2'} p_3^{e_3 - e_3'} \cdots$$

Our New Goal

Find positive exponents $(e_1', e_2', e_3', \ldots)$ such that

$$p_1^{e_1'}p_2^{e_2'}p_3^{e_3'}\cdots\approx N$$

This is an (approximate) knapsack problem !

$$\mathbf{e}_1' \ln p_1 + \mathbf{e}_2' \ln p_2 + \mathbf{e}_3' \ln p_3 + \cdots \approx \ln N$$

Aiming with lattices

Choose a constant C to rewrite the knapsack as a lattice CVP

$\mathsf{Knapsack} \neq \mathsf{CVP}$

The lattice solution $(e'_1, e'_2, e'_3, ...)$ may not have positive exponents

Aiming with lattices

Choose a constant C to rewrite the knapsack as a lattice CVP

$\mathsf{Knapsack} \neq \mathsf{CVP}$

The lattice solution $(e'_1, e'_2, e'_3, ...)$ may not have positive exponents

But that might be OK !

• $u/v \approx N \Rightarrow u \approx vN$, therefore S = u - vN may be small

• Quality degrades as $v = \prod_{e'_i < 0} p_i^{-e_i}$ gets larger

Attempting Average-Case Analysis

Lattice Pitfalls

- The lattice is not full dimensional
- Gaussian Heuristic seems invalid
- The ℓ_2 norm is a bit inadequate
- Naive predictions of ℓ_2/ℓ_1 can also fail

apply due projections

for certain C

 ℓ_1 more relevant

Trial Division Pitfall

• B-Smoothness probability of S = u - vN lower than expected

$$p_i|u \vee p_i|v \Rightarrow p_i \not| S$$

Mind the Variants

- Most papers force $B = p_n$ or B = 1. Here: B unconstrained.
- The diagonal part of the lattice may vary as well.

Experiments

æ

.⊒ →

< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

Experiments

The size of S roughly dictates the cost of the non-lattice steps

For factoring a 100-bits N, to beat QS at the non-lattice steps, we should need a lattice dimension of at least $n \ge 50$.

- It's a deep and brilliant idea ... that doesn't seem to work ^(C)
 A solid average-case complexity analysis is still missing and appears quite challenging ...
- It nevertheless found applications beyond factoring

- It's a deep and brilliant idea \ldots that doesn't seem to work $igodoldsymbol{arepsilon}$
- A solid average-case complexity analysis is still missing

and appears quite challenging ...

It nevertheless found applications beyond factoring

An attempt at proving SVP ≥ Factoring [Adleman 1995]
 Proof of NP-hardness of SVP [Ajtai 1998, Micciancio 1998]
 Idea reused for in relation to the abc-conjecture [Bright 2014]
 Idea reused in a Module-LLL Algorithm [LPSW 2019]