
Towards composition of distributed evolving services:
the Credo approach (Invited Paper)

Andries Stam
Almende BV

Westerstraat 50
Rotterdam, The Netherlands
andries@almende.com

Alfons Salden
Almende BV

Westerstraat 50
Rotterdam, The Netherlands
alfons@almende.com

ABSTRACT
ICT service providers face increasing demands on dynamic,
flexible and scalable composition of their evolving software
services. These demands complicate the validation and veri-
fication of such compositions as–a–whole. Within the Euro-
pean Credo research project, we develop techniques for the
modeling, validation and verification of compositional dis-
tributed services. Our approach is based on two principles:
a clear formal separation between the service components
and the logical network that binds them together, and sup-
port for light–weight, preferably automated verification and
model checking for all modeling techniques. In this paper,
we apply the Credo techniques to ASK, a context–aware
response system with intelligent matching functionality for
connecting people to other people via existing communica-
tion technologies.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Meth-
ods; D.2.7 [Distribution, Maintenance, and Enhance-
ment]: Restructuring, reverse engineering, and reengineer-
ing

Keywords
services, composition, evolution, exogenous coordination,
Credo, Creol, Reo, Automata, C

1. INTRODUCTION
ICT Service providers face increasing demands on dy-

namic, flexible and scalable composition of their software
services. Customers more and more require that ICT ser-
vices of various suppliers can be composed and dynamically
adapted on demand, while the resulting compositions should
continuously ensure certain levels of availability and robust-
ness. If the service components themselves evolve over time,
this introduces additional complexity to the verification of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008 September 23-25, 2008, Turin, Italy
Copyright c© 2008 ICST ISBN # 978-963-9799-34-9.

functional and non–functional properties of their composi-
tions. In the European FP6 project Credo (IST–33826), we
develop techniques and tools for the modeling, validation
and verification of compositional distributed services. The
techniques and tools are based on two principles: a clear
formal separation between the service components and the
logical network that binds them together, and support for
light–weight, preferably automated verification and model
checking for all modeling techniques.

In this paper, we provide a survey of the work that is being
carried out in the context of the Credo project, focusing on
the composition of distributed evolving service components.
We apply the Credo techniques to ASK, a context–aware
response system with intelligent matching functionality for
connecting people to other people via existing communica-
tion technologies. We show that the principles of Credo en-
able the modeling and verification of the ASK system during
evolution of its distributed service components.

The paper is organized as follows. In Section 2, we intro-
duce the Credo approach together with its modeling and ver-
ification techniques. In Section 3, we give a short overview of
the ASK System as it exists currently, and indicate in which
directions we would like to evolve it. In Section 4, we show
how the Credo tools are currently being applied to ASK, in
order to transform this system into a set of small distributed
service components which can be dynamically composed to
cope with changing functional and non–functional require-
ments. Finally, in Section 5, we conclude and present future
work.

2. THE CREDO APPROACH
The Credo Project aims at the development of formal

methods and techniques for the modeling and analysis of
compositions of distributed evolving services. A basic prin-
ciple in Credo is the adoption of a clear separation of con-
cerns between the components providing the services and the
logical network via which these components are connected.
This separation of concerns is at least adopted at the level of
modeling and analysis, but it can also be realized at the level
of implementation, if desired. Separate modeling languages
and light–weight or automated verification techniques and
tools are developed for the components, the network, and
their combination. Thereby, Credo focuses on the analysis
of the effect of component changes and reconfiguration of
the network.



An overview of the primary entities recognized in service
component models is shown in Figure 1. Service compo-
nents are used as the container entities for services. Their
functionality is modeled in terms of classes, instantiated
into objects. A composition of service components is con-
nected via a logical network, which determines how com-
munication between the components takes place in order
to let them work together as a system. Both components
and their inner classes have so–called behavioral interfaces,
which specify their behavior and non–functional behavioral
properties in an abstract way. They can be used for the ver-
ification of compositions of either objects or components. In
the next subsections, we introduce the Credo modeling lan-
guages used for components, objects and the network and
briefly mention the supported verification techniques.

component

behavioral 

interface

object

(class)

network

Figure 1: End user perspective overview

2.1 Components and Classes: Creol
Service components and classes are modeled using the

statically typed high–level concurrent object–oriented mod-
eling language Creol [12, 13]. The expressiveness of the Creol
language makes it very suitable for modeling, since in many
cases models of a system can be structured in a way very
similar to the implementation of that system (e.g. with re-
spect to method names and flow of control). Creol has a for-
mal syntax and concise operational semantics. To give the
reader an idea of how models in Creol are specified, Figure 2
provides a simple example of a Creol interface and class, the
latter one implementing a single method outputting the sum
c of two integers a and b.

Tools are available to edit, type check, compile and run
Creol models from Eclipse. Run–time checking of assertions
and model checking can be done by running Creol models
in the rewrite engine Maude [9]. An important property of
Creol is that type checking can be performed in the context
of dynamic class updates [19]. Currently, we investigate ways
to test and verify system implementations written in the
programming language C against Creol models.

interface Adder
begin
with Any op add(in a: Int, b: Int; out c: Int)

end

class Adder implements Adder
begin
with Any op add(in a: Int, b: Int; out c: Int) ==
c := a + b

end

Figure 2: Example of a Creol Model

2.2 The Network: Reo
Component compositions are realized by connecting sets

of components via logical networks. For the modeling and
realization of such networks, Credo provides several tech-
niques and languages, of which the most important one is
the channel–based exogenous coordination language Reo [4,
3]. In Reo, communication between components is mod-
eled in terms of channels connected to each other via nodes.
Components exchange values via ports, which are connected
to certain Reo nodes. An important enabler for the dynamic
composition of distributed evolving service components is
the fact that Reo is an exogenous coordination language:
components communicate solely via ports, remaining com-
pletely unaware of the identity of other components in their
environment. The values they send or receive have no tar-
get or source address. Instead, it is the responsibility of the
logical network, the Reo circuit, to route messages between
service components.

The example of Figure 3 shows a Reo circuit connecting
three service components. This circuit ensures that values
coming from the left port of component A are received by
either component B or component C, depending on the avail-
ability of a value on one of the ports at the right side of A.
This simple circuit already illustrates how dynamic recon-
figuration for purposes of e.g. load balancing can be realized
without changing the components used in the composition.

Service 

Component 

B

Service Component A

Service 

Component 

C

Figure 3: Example of a Reo Network



Reo editors, animators and model checking tools are avail-
able as plug–ins for Eclipse. Various extensions for Reo are
available as well, like tools to check the equivalence of Reo
networks [8] and the integration with well–known business
process languages like BPEL. Currently, progress is made
regarding dynamic reconfiguration of Reo circuits and auto-
mated code generation for the programming language C.

2.3 The Integration: Automata
An important issue in the composition of distributed evol-

ving service components is the validation and verification of
the behavior of a composition as–a–whole. In Credo, light–
weight verification is possible through the usage of Behav-
ioral Interfaces. Such interfaces describe the abstract be-
havior of a class or a component in terms of the possible se-
quences of communication with them, for example in terms
of inputs (dependencies) and outputs (results). For their
specification, we use several types of automata, largely in-
spired by the idea of interface automata [10].

Automata provide a concrete and intuitively clear model
of computation, and a structural approach to the analysis
of the behavior of components and their composition. Mul-
tiple automata can be combined via product functions into
larger automata. Checks can be performed whether, given a
certain abstraction function, the behavioral interfaces for a
set of objects in combination realize the behavior specified
in the behavioral interface for a component. More impor-
tantly, the compatibility of behavioral component interfaces
and Reo networks can be checked, via the generation of so-
called constraint automata for Reo circuits [5]. Progress is
made within Credo regarding tools for the model checking
of timing constraints and scheduling policies for components
and objects.

Two simple examples of behavioral interfaces in terms of
automata are given in Figure 4. The transitions between the
states in the automata specify value inputs (?) or outputs
(!) on certain ports (x, y, z, z′). Transitions from a black dot
indicate initial states. The automaton at the left of the fig-
ure specifies that a component or object implementing this
automaton repeatedly behaves as follows: Firstly, receive a
value via port x. After that, send a value via either port y or
port z. The syntax of automata can be easily extended to al-
low for the specification of various non–functional properties
on the transitions, like timings or memory consumption.

A B A B

D C

x?

y!

z!

x?

y!

z! z'!

x?

z!

Figure 4: Behavioral Interface Automata

The concept of behavioral interface is one of the keys to
the verification of compositions of distributed evolving ser-
vices. Once a service component evolves, this likely causes
changes to its behavior at the interface level, or to the value
types exchanged through its ports, or to its non–functional
properties. Hence, newer versions of its behavioral interfaces
can be used to incorporate this evolution in an abstract way.

These newer versions, in turn, can then be used a priori or
a posteriori to verify whether the composition as–a–whole,
including its Reo circuit, satisfies composition–level require-
ments.

In the next section, we introduce the ASK system, which
is used as a case study for the Credo “approach” presented
above. we show some initial results in the application of this
approach to ASK in Section 4.

3. THE ASK SYSTEM
ASK has been developed by Almende [1], a Dutch research

company focusing on the application of self–organisation in
human organisations and agent–oriented software systems.
The system is marketed by ASK Community Systems [2].
ASK provides mechanisms for matching users requiring in-
formation or services with potential suppliers. Based on
information about earlier established contacts and feedback
of users, the system learns to bring people into contact with
each other in the most effective way. Typical applications for
ASK are workforce planning, customer service, knowledge
sharing, social care and emergency response. Customers of
ASK include the European mail distribution company TNT
Post, the cooperative financial services provider Rabobank
and the world’s largest pharmaceutical company Pfizer. The
amount of people using a single ASK configuration varies
from several hundreds to several thousands.

3.1 Purpose and Functionality
The primary goal of the ASK system is to connect people

to other people in the most effective way. The system acts
as a mediator in establishing the contacts: people can con-
tact the system via various media like telephone or email,
and the system itself is also able to contact people via those
media. In determining the effectiveness of contact establish-
ment, multiple aspects play a role. For example, the rating
of human knowledge and skills is important in cases where
people request contact with specialists or service providers.
In these cases, the ASK system is able to ask participants
for feedback on the quality of service after the contact. This
feedback can be used for optimization of subsequent requests
of the same kind. A different role is played by time schedules,
which indicate when certain people can be reached for cer-
tain purposes. The ASK system differentiates between regu-
lar plannings and ad–hoc schedules caused by sudden events
or delays. Different communication media play another role.
In most ASK configurations, voice communication (phone,
VoIP) is the primary communication medium used, but dif-
ferent media like email and SMS are supported by ASK as
well. Moreover, people can own various phone numbers and
email addresses, for which they can indicate preferences and
time or service dependent usage constraints. The ASK sys-
tem is able to exploit knowledge about the reacheability of
people via specific media, for example in the context of emer-
gency response systems, where people must be contacted
within a certain time window. In general, learning from
past experiences of all kinds and forecasting based on these
experiences plays a crucial role in ASK.

3.2 Technical Architecture
The software of ASK can be technically divided into three

parts: the web front-end, the database and the ASK engine
(see Figure 5). The web front-end acts as a configuration
dashboard, via which typical domain data like users, groups,



phone numbers, mail addresses, interactive voice response
menus, services and scheduled jobs can be created, edited
and deleted. This data is stored in a database, one for each
configuration of ASK. The feedback of users and the knowl-
edge derived from earlier established contacts are also stored
in this database. Finally, the ASK engine consists of a quin-
tuple of components Reception, Matcher, Executer, Resource
Manager and Scheduler, all written in the C programming
language, which handle inbound and outbound communica-
tion with the system and provide the intelligent matching
and scheduling functionality.

The mechanism of dynamic reconfiguration has been pro-
moted by Almende in earlier research on the Common Hy-
brid Agent Platform (CHAP) [18], of which one part, the
Abbey, is the foundation for each of the components in ASK.
An abbey is an enhanced thread pool, in which separate
threads, called monks, are capable of performing arbitrary
tasks. Components are able to communicate with each other
by sending and/or receiving requests as part of a task. Hence,
the structural facilities for reconfiguration, in terms of inde-
pendently executable tasks, are already present in the archi-
tecture.

ASK Engine

Resource
Manager

Reception Matcher Executer Scheduler

phone
connec

toids

email 
connec

toids

sms 
connec

toids

scheduler
connec

toids

domain
data

file
connec

toids

Web
Frontend

Request Loop

Figure 5: ASK System Overview

The “heartbeat” of the ASK engine is the Request loop, in-
dicated with thick arrows. Requests loop through the system
until they are fully completed. The Reception component de-
termines which steps must be taken by ASK in order to fulfil
(part of) a request. The Matcher component searches for
appropriate participants for a request. The Executer com-
ponent determines the best way in which the participants
can be connected. ASK clearly separates the medium and
resource independent request loop from the level of media–
specific resources needed for fulfilling the request, called
connectoids (e.g., a connected phone line, a sound file be-
ing played, an email being written, an SMS message to be
sent). The Resource Manager component acts as a bridge
between these two levels. Finally, a separate Scheduler com-
ponent schedules requests based on job descriptions in the

database. In the next paragraphs, we discuss in more de-
tail those components which create and exploit knowledge
in ASK: the Reception, the Matcher and the Scheduler com-
ponent.

Reception.
The major role of the Reception component is to deter-

mine which action should be taken by the ASK system based
on a request. To give an example, if a request is received
containing an incoming call event from a certain telephone
number, the Reception component can decide to present a
specific interactive voice response (IVR) menu to the caller,
depending on the current date and time, number of the caller
and the number being called. The caller is then able to pro-
vide information about the request, by selecting submenus or
actions via dual–tone multi–frequency (DTMF) dial tones.
A request could also originate from the scheduler, for ex-
ample if the ASK system calls a user in order to ask for
feedback or for availability as an ASK responder for a cer-
tain time period. The reception component is responsible for
performing updates to the contents of the database in terms
of adding previously unknown telephone numbers, adding
feedback from users or changing schedules of responders.

Matcher.
The Matcher component tries to find users satisfying a

request. For example, a person calling the ASK system
could ask for a connection with a specialist on a certain
topic. Matching can be complicated, since the preferences
and time schedules of the requester and candidate respon-
ders must be taken into account, as well as feedback about
earlier contacts. The Matcher tries to find several candi-
date responders and selects between them using one of four
possible methods:

1. Round Robin: the Matcher randomly selects a respon-
der from the set of candidates available.

2. Last Spoken: the Matcher selects the responder that
was selected previously.

3. Rating: the Matcher uses feedback provided by the
requester about potential responders and selects the
one with the highest rating.

4. Friendly Rating: the Matcher again selects based on
the received ratings, but occasionally randomly selects
a different responder in order to provide them with the
opportunity to improve their rating.

Scheduler.
The Scheduler component realizes the execution of vari-

ous types of scheduled jobs. Typical jobs are: contacting
requesters and responders to obtain feedback about earlier
connections, or contacting potential responders for availabil-
ity. In executing these jobs, the Scheduler component keeps
track of the time schedules and preferences of users. The
Scheduler itself does not take part in the request loop: its
messages enter the request loop as if they come from out-
side the system. Jobs for the Scheduler can be put into the
database manually via the web front–end, or automatically,
as the result of the execution of requests in the ASK engine.



3.3 Future Developments of ASK
Currently, ASK configurations are deployed on a per–

customer basis in a centralized manner. Developments in
information and communication services, however, call for
more openness and distribution of the services of ASK. Fu-
ture developments of ASK likely include the following:

• improving context–awareness and sustainability of the
ASK system, with a focus on distribution, replication
and adaptation of its components and component in-
teractions.

• improving synthesis of ASK and other systems, with
a focus on enabling and coordinating the exchange of
data from different domains. Currently, we investigate
synthesis with logistic systems.

• improving organization–specific customization and per-
sonalization of the ASK system, with a focus on data
distribution, data encapsulation and agentification.

Especially the first topic is relevant in the context of this
paper. In the next section, we will show how we apply the
Credo modeling and verification techniques for improving
distribution, replication and adaptation of the ASK system.

4. APPLYING CREDO TO ASK
As we explained, the basic modeling entities in the Credo

approach are Creol models for service components, Reo cir-
cuits for their exogenous coordination networks, and au-
tomata for behavioral interfaces.

4.1 Creol and Automata
We use Creol to model the functionality of the ASK sys-

tem, at a high level of abstraction, primarily for purposes
of analysis and verification. Automata are used to capture
the behavioral interfaces of components and of certain im-
portant separable inner functions of these components. The
Creol models can be verified against these automata, which
provides us two different levels of abstraction on top of the
actual code. Methods and techniques are currently devel-
oped to verify Creol specifications against the C codebase of
ASK.

As we explained in Section 2, automata specifications of
behavioral interfaces are especially useful for purposes of
evolution, for three reasons. Firstly, they capture the dy-
namics of service components, whichs allows for compatibil-
ity checking of evolving service components against a net-
work, and model checking of a set of automata in combina-
tion. Secondly, the types of exchanged values can be speci-
fied, which allows for static type checking. In the context of
evolution, we envision extensions to the type checking ap-
proach, in terms of meta-information about complex types,
or simple filtering and transformation techniques for pur-
poses of type conversion. The approach of Reo, with its
extensible set of channels, is particularly useful for such a
latter extension. Thirdly, non–functional properties relevant
in the context of application can be modeled with automata
as well. To give an example: because time and schedul-
ing plays a considerable role in the ASK system, we use
timed automata [6] and their derivative task automata [11]
to model, simulate and model check timing issues in UP-
PAAL, an integrated tool environment for the modeling and
simulation of real–time systems.

For the near future, we have planned to experiment with
the integration of automata and Creol models within service
components, as a means to provide them an abstract self–
model. These models can be used within a composition of
evolving service components for a priori compatibility, model
or type checking. Although the checks themselves are cur-
rently still carried out by hand, we expect that at least parts
of these checks can be completely automated.

As an example, Figure 6 shows a service component in
three stages of evolution. In its first stage, it provides inter-
face old interface and meta–interface. The meta–interface
provides ways to access the automata and Creol models of
the service component. In an intermediary stage, a new
interface is added. As a consequence, the meta–interface
now provides new or updated models, which can be used to
check how the new or updated interfaces can be exploited
and what kind of dependencies they introduce in the compo-
sition. If exploitation is possible and the dependencies can
be fulfilled, the Reo circuit can be adapted to incorporate
the new interface in the composition, for example through
a reconfiguration mechanism like shown in Figure 3. Even-
tually, if no use is made of the old interface anymore, this
interface could be removed and we enter the evolved third
stage.

Service Component

New interface Metainterface

Service Component

Old interface Metainterface

Service Component

Old interface New interface Metainterface

tim
e

Figure 6: Evolution of Component Interfaces

4.2 Reo
Communication within and between ASK components is

reorganized into communication via new C code generated
from Reo circuit specifications, as a means to achieve better
compositionality through exogenous coordination and to en-
able dynamic composition and reconfiguration. Exogenous
coordination is an important enabler of dynamic reconfigu-
ration. Take for example Figure 7, which represents the core
ASK components connected to each other via Reo channels.
Suppose, for example, that we would like to add a new com-
ponent with new matching functionality, say Matcher’. Ex-
ogenous coordination makes it possible to easily reroute re-
quests from the Reception component to either the Matcher
component or the Matcher’ component, without any changes
to the Reception component itself.



Resource
Manager

Reception

Matcher

Executer

Figure 7: Exogenous Communication in ASK

Furthermore, we plan to reorganize the inner structure of
the ASK components as well. In fact, we regard the com-
ponents as compositions of even smaller components. An
example is shown in Figure 8, which illustrates how the Re-
ception component can be internally structured as a com-
position of a Case Selector, which determines the type of an
incoming request, and a set of Request Handlers with knowl-
edge of how a particular request can be fulfilled. Again, Reo
circuits are used to connect the smaller components to each
other. This shows that the same composition mechanism
can be used at different levels of service granularity, allow-
ing for a hierarchy of compositions.

Reception

case
selector

request
handler

request
handler

request
handler

Figure 8: Exogenous Comm. inside Components

Clearly, Reo is an important enabler for all kinds of dy-
namic reconfiguration, while Creol and automata enable us
to reason about the properties of specific configurations.
Thereby, the Credo approach provides the necessary ingredi-
ents for reasoning about compositions of evolving distributed
service components.

5. CONCLUSIONS AND FUTURE WORK
We have pointed out the added value of the Credo ap-

proach for robust and flexible adaptation of compositions of
distributed evolving services. We showed how we currently
apply the modeling techniques of Credo to the ASK system:
we create Creol and automata models for the ASK service
components in order to reason about their individual behav-
ior and non–functional properties, and we use Reo circuits
to connect the components together and to coordinate them
in an exogenous manner. Thereby, we are able to implement
all kinds of reconfigurations, which can be verified via Creol
and automata models, and actuated via Reo circuits.

In future work we will focus on the evaluation of the Credo
approach in enabling the synthesis of ASK with other sys-
tems and the personalization and customization of ASK. In
this respect, we would like to further develop the idea of
using Credo models as self-models for service components.
Another challenge is to enhance the Credo modeling lan-
guages with constructs for semantic modeling.

As an engineering challenge, we foresee finding the right
tools for the identification of categories of models of evolv-
able service components. Several models and infrastruc-
tures were proposed in [17, 15, 7, 14] for grounding for-
mal modeling languages, like those of Credo, and seman-
tic web tools, on the basis of evolving business networks.
Such models and infrastructures leverage dynamic service
management and adaptation in a robust, distributed and
sustainable way. They help in identifying the appropriate
boundaries of service components. Furthermore, they also
capitalize on these identified boundaries by inducing po-
tential semantics–oriented and cognitive network categories.
Such network categories are assumed to emerge upon self–
organization and form the basic reusable modular structures
and functional organization schemes for self–management
and self–adaptation [16]. In the context of this paper it may
also be interesting whether the emerging self–management
and self–adaptation modules can be represented in terms of
the Credo system, i.e. as living instances of Creol models,
automata and Reo circuits. In addition the question arises
whether the theories of self–organization can shed a light on
what is missing in the Credo modeling languages and ver-
ification techniques for the representation and checking of
functional and non–functional service requirements at run–
time.

6. REFERENCES
[1] Almende website. http://www.almende.com.

[2] ASK community systems website.
http://www.ask-cs.com.

[3] F. Arbab. Reo: a channel-based coordination model
for component composition. Mathematical. Structures
in Comp. Sci., 14(3):329–366, 2004.

[4] F. Arbab and F. Mavaddat. Coordination through
channel composition. In COORDINATION ’02:
Proceedings of the 5th International Conference on
Coordination Models and Languages, pages 22–39,
London, UK, 2002. Springer-Verlag.

[5] C. Baier, M. Sirjani, F. Arbab, and J. Rutten.
Modeling component connectors in reo by constraint
automata. Sci. Comput. Program., 61(2):75–113, 2006.

[6] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer, 2003.

[7] G. Binnig, M. Baatz, J. Klenk, and G. Schmidt. Will
machines start to think like humans – artificial versus
natural intelligence. Europhysics news, pages 44–47,
2002.

[8] T. Blechmann and C. Baier. Checking equivalence for
reo networks. Electron. Notes Theor. Comput. Sci.,
215:209–226, 2008.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.



Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 2001. This
volume.

[10] L. de Alfaro and T. Henzinger. Interface automata. In
Proceedings of the. ACM Press, January 2001.

[11] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task
automata: Schedulability, decidability and
undecidability. Inf. Comput., 205(8):1149–1172, 2007.

[12] E. B. Johnsen and O. Owe. An asynchronous
communication model for distributed concurrent
objects. Software and Systems Modeling, 6(1):35–58,
Mar. 2007.

[13] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A
type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science,
365(1–2):23–66, Nov. 2006.

[14] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer Society, pages
41–50, 2003.

[15] P. Oreizy, M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An architecture-based
approach to self-adaptive software. IEEE Intelligent
Systems, pages 54–62, 1999.

[16] A. Salden. Self-organizing e-business systems. In
TACC 2008, Budapest Tutorial and Workshop on
Autonomic Communications and Component–ware,
Budapest, Hungary, July 2008.

[17] A. H. Salden and M. Kempen. Sustainable cybernetics
systems – backbones of ambient intelligent
environments. November 2004.

[18] J. Valk, J. P. Larsen, P. van Tooren, and A. ter Mors.
Channel-based architecture for dynamically
reconfigurable networks. In BNAIC, pages 246–253,
2005.

[19] I. C. Yu, E. B. Johnsen, and O. Owe. Type-safe
runtime class upgrades in Creol. In R. Gorrieri and
H. Wehrheim, editors, Proc. 8th International
Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’06), volume 4037 of
Lecture Notes in Computer Science, pages 202–217.
Springer-Verlag, June 2006.


