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Abstract We present the semantics and proof system for an object-
oriented language with active objects, asynchronous method calls, and
futures. The language, based on Creol, distinguishes itself in that unlike
active object models, it permits more than one thread of control within
an object, though, unlike Java, only one thread can be active within
an object at a given time and rescheduling occurs only at specific re-
lease points. Consequently, reestablishing an object’s monitor invariant
is possible at specific well-defined points in the code. The resulting proof
system shows that this approach to concurrency is simpler for reasoning
than, say, Java’s multithreaded concurrency model. From a methodologi-
cal perspective, we identify constructs which admit a simple proof system
and those which require, for example, interference freedom tests.

1 Introduction

The increasing importance of distributed systems demands flexible communica-
tion forms between distributed processes. While object-orientation is a natural
paradigm for distributed systems [17], the tight coupling between objects tradi-
tionally enforced by method calls may be criticized. Asynchronous method calls
have been proposed to better combine object-orientation with distributed pro-
gramming, with a looser coupling between a caller and a callee than in the tightly
synchronized (remote) method invocation model. Return values from asynchron-
ous calls are managed by so-called futures [4,10,13,20,26]. In this paper, we de-
velop a kernel language for distributed concurrent objects in which asynchronous
method calls is the basic communication construct. The model of asynchronously
communicating objects is inherently concurrent, and synchronized communica-
tion and sequential execution appear as special cases. The proposed kernel lan-
guage combines the concurrency model of Creol [18], an object-oriented language
for concurrent objects, with first-class futures, presented in a Java-like syntax.
Futures are not transparent but may be communicated between objects, so re-
turn values from asynchronous method calls may be shared. The paper presents
an operational semantics for this kernel language, and introduces a novel proof
system for concurrent objects with asynchronous method calls and futures.
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The adopted concurrency model is based on concurrent objects, each with
its own processor. Inside an object, method activations are executed in an inter-
leaved way. Thus execution in an object is reminiscent of monitors, but explicit
signaling is avoided by introducing so-called release points at which control may
change between different method activations competing for execution. The inter-
leaved execution of method activations allows different activities to be pursued
within the object; in particular, active and reactive object behavior are easily
and dynamically combined. Whereas an active object usually relies on a pres-
elected method to define its active behavior, we exploit asynchronous method
calls as triggers of concurrent activity. Asynchronous method calls spawn activi-
ties in other objects while the caller proceeds with its execution. Futures extend
this technique to include the forwarding and sharing of replies to method calls.
Each object sharing a future may choose to either completely block or alterna-
tively to release control while waiting for the reply associated with the future.
Any method may be called both synchronously and asynchronously. In fact,
synchronous calls are treated as a special case of asynchronous calls, for which
execution immediately blocks while waiting for the reply. Thus, synchronous
calls restrict the natural concurrency of the model by sequentializing activity.

Proof theories for multithreaded object systems are complicated by the in-
terference problem for shared variables, which appears when threads operate
concurrently in the same object. Reasoning about programs in this setting is
highly complex [1]: Safety is by convention rather than by language design [3].
The simplicity of the proof system proposed in this paper, in contrast to that
of, for example, multithreaded Java, is a major advantage of concurrent object
models compared to multithread concurrency. The proposed proof system uses
a local assertion language to describe the local state of an object in the pre- and
postconditions of methods and in monitor invariants. On the other hand, a global
assertion language is used for describing invariant properties of inter-object syn-
chronization. In this paper, we present a novel view of an object as a maintainer
of multiple local monitor invariants and a global synchronization constraint. The
local invariants monitor the different release points of an object. These multiple
monitor invariants require a novel proof system for their mutual dependencies
to establish their invariance. This clear separation of concerns between intra-
and inter-object synchronization is also reflected in the completeness proof for
the proof theory. In fact, the completeness proof (only briefly discussed in this
paper due to lack of space) is based on a semantic characterization of the global
invariant in terms of futures and two local history variables. In addition to a lo-
cal communication history, recording the externally observable behavior of each
object as specified by its method calls, a local scheduling history records the
internal scheduling in an object, which is completely encapsulated by its local
invariants, recording snapshots of the corresponding release points.

Paper overview. Sect. 2 introduces the kernel language and its operational
semantics and Sect. 3 provides an example. Sect. 4 introduces the assertion lan-
guage, Sect. 5 a proof system for concurrent objects with asynchronous method
calls and futures, Sect. 6 discusses related work and Sect. 7 concludes the paper.
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P ::= L {T x; sr} L ::= class C extends C {T f ; M}
M ::= T m (T x){T x; sr} e ::= v | e.get | e!m(e) | new C() | null
v ::= f | x s ::= v := e | await g | s � s | s ||| s | skip | s; s

| if g then s else s fi | release | s /// s
sr ::= s; return e g ::= wait | b | v? | g ∧ g
b ::= true | false | v T ::= C | bool | !T

Figure 1. The language syntax. Variables v are fields (f) or local variables (x), and C
is a class name.

2 The Language

A kernel language for distributed concurrent objects with asynchronous method
calls and futures is now introduced, extending the syntax of Featherweight
Java [16]. In contrast to Featherweight Java, each object encapsulates its state;
i.e., external manipulation of the state is via the object’s methods only. Further-
more different objects execute concurrently: each object has a thread dedicated
to executing its processes, which correspond to activations of its methods. To
preserve an object’s invariants for reasoning control, execution is restricted so
that only one process may be active in an object at a time; other processes in the
object are suspended. We distinguish between blocking a process and releasing
a process. Blocking suspends process execution, but does not relinquish control
to a suspended process. Release stops process execution and reschedules another
(suspended) process. Using release points within method bodies, an object may
interleave the execution of several (non-terminating) processes.

Method calls are asynchronous and the result of a call is stored in a future.
Rather than forcing the caller to wait for the call to return, which is unsatisfac-
tory in a distributed setting where communications may disappear and perma-
nently block the caller’s process, return values are first accessed when required.
Execution only blocks when attempting to read from a future without a return
value. Futures may also be polled, enabling fine grained control of scheduling. In
contrast to the read operation on a future, the polling operation never blocks.

The implicit control flow in an object can be influenced by means of release
points expressed as Boolean guards, which may include the polling of futures.
This way, processes may choose between blocking and releasing control while
waiting for the reply to a method call. Release points can be used to combine
active and reactive processes in an object; the object can behave both as client
and server without requiring an active loop to interleave these different roles.

2.1 Syntax

The language syntax is given in Fig. 1. We emphasize the differences with Java.
A program P is a list of class definitions followed by a method body. A class
inherits from a superclass, which may be Object, extending it with additional
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config ::= ε | object | future | config config o ::= (oid, C)

object ::= (o, processQ, fds, active) fds ::= f v
future ::= (mid, mc,mode, v) mc ::= oid.m(v)

active ::= process | idle process ::= (T x v, sr : T )
processQ ::= ε | process | processQ processQ v ::= oid | mid | null | b

Figure 2. The syntax for runtime configurations. Here, oid and mid denote identifiers
for objects, and futures. Processes include both the types of local variables and the
expected return type (which we often elide for simplicity of presentation).

fields f and methods M . Methods have read-only access to a variable destiny
which is a reference to the future that will hold the result of the current method.

Expressions e are standard apart from the asynchronous method call e!m(e)
and the (blocking) read operation v.get. Statements s are standard apart from
release points await g, non-deterministic choice s1 � s2, and merge s1|||s2 for
the interleaved execution of branches s1 and s2. Guards g are conjunctions of
wait, Boolean expressions b, and the polling operation v? on a future v. When
the guard in an await statement evaluates to false, the active process is re-
leased and another suspended process may be rescheduled. Otherwise, the pro-
cess proceeds. Non-deterministic choice allows either branch to be selected. The
branches of a merge are interleaved at release points, influencing the flow of con-
trol within a process without allowing other processes to execute. In addition,
the intermediate statements release and s1///s2 appear during reduction. The
release statement is introduced when the guard of an await statement reduces
to false, and the s1///s2 statement corresponds to the activation of statement
s1 in the merge of statements s1 and s2, where statement s2 is delayed.

Typing. The type system, omitted for space reasons, closely resembles that of
Featherweight Java [16]. Let !T denote the type of a future which will ultimately
contain a value of type T . An asynchronous call to a method with return type
T results in a future of type !T . If v has type !T , then v.get has type T and v?
has type bool. Type soundness is easily established for this type system and the
reduction semantics presented in Sect. 2.2 below.

2.2 Semantics

The semantics is a small-step reduction relation on configurations of objects and
futures (see Fig. 2). Objects have an identifier, a class, a queue of suspended pro-
cesses, fields, and an active process. The process idle indicates that no method is
running in the object. A future captures the state of a method call: initially sleep-
ing, the method call later becomes active, and finally, when completed, it stores
its result in the future. The value mode ∈ {s, a, c} represents these three future
states. Types are given default values by the default function (e.g., default(C) =
null, default(bool) = false, and default(!T ) = null). The initial configuration
of a program L {T x; sr} has one object (o, ∅, ∅, (T x default(T ), sr : T )).
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Reduction takes the form of a relation config → config′. Rules apply to partial
configurations and may be applied in parallel. This differs from the semantics
of object-oriented languages with a global store [11], but is consistent with the
Creol’s [18] executable semantics in Maude [5], and allows true concurrency in the
distributed setting. The main rules are given in Fig. 3. The context reduction
semantics decomposes a statement into a reduction context and a redex, and
reduces the redex [9]. Reduction contexts are method bodies M , statements S,
expressions E, and guards G with a single hole denoted by •:

M ::= • | S; return e | return E

S ::= • | v := E | S; s | if G then s1 else s2 fi | S /// s

E ::= • | E.get | E!m(e) | v!m(v, E, e)

G ::= • | E? | G ∧ g | b ∧G

Redexes reduce in their respective contexts; i.e., body-redexes in M , stat-redexes
in S, expr-redexes in E, and guard redexes in G. Redexes are defined as follows:

body-redexes ::= return v

stat-redexes ::= x := v | f := v | await g | s � s | skip; s | if b then s else s

| s|||s | skip///s | release; s///s′ | release
expr-redexes ::= x | f | v.get | v.m!(v) | new C()

guard-redexes ::= mid? | b ∧ g | wait

Filling the hole of a context M with an expression r is denoted M [r]. Before eval-
uating the expression e in the method body s; return e, the body will be reduced
to skip; return e. For simplicity, we elide the skip and write just return e.

Expressions and guards. In (Red-Call), an asynchronous call adds a sleeping
future to the configuration, returning its identifier to the caller. In (Red-Get), a
read operation on a future variable blocks the active process until the future is
in completed mode. Blocking does not reschedule a suspended process. Object
creation in (Red-New) introduces a new instance of a class into the configuration,
with default values for the new object’s fields. Guards determine if a process
should be released and another process rescheduled. In (Red-Poll), a future vari-
able is polled to see if a call has been executed. In contrast to (Red-Get), polling
a future at a release point (await) enables the release of the active process. In
particular, await wait will always release the active process.

Statements and rescheduling. In (Red-Await), a process at a release point pro-
ceeds if its guard is true and otherwise releases. When a process is released, its
guard is reused to reschedule the process. A guard with clause wait causes a pro-
cess to release. When it becomes a candidate for rescheduling, wait is replaced
by true so that the process can proceed. When an active process is released or
terminates, it is replaced by the idle process, which allows a process from the
process queue to be scheduled for execution in (Red-Reschedule).
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(Red-Merge1)

(o, pq, fds, (l, M [s|||s′]))
→ (o, pq, fds, (l, M [s///s′]))

(Red-Merge2)

(o, pq, fds, (l, M [s|||s′]))
→ (o, pq, fds, (l, M [s′///s]))

(Red-Merge-Skip)

(o, pq, fds, (l, M [skip///s]))
→ (o, pq, fds, (l, M [s]))

(Red-Call)

mid is fresh
(o, pq, fds, l, (M [oid!m(v)]))
→ (o, pq, fds, (l, M [mid]))

(mid, oid.m(v), s, null)

(Red-New)

oid is fresh fds’ = defaults(C)

(o, pq, fds, (l, M [new C()]))
→ (o, pq, fds, (l, M [oid]))

((oid, C), ε, fds’, (ε, skip))

(Red-Merge-Release1)

enabled(s′, (fds, l), µ)

(o, pq, fds, (l, M [release; s///s′])) µ
→ (o, pq, fds, (l, M [s′///s])) µ

(Red-Merge-Release2)

¬enabled(s′, (fds, l), µ)

(o, pq, fds, (l, M [release; s///s′])) µ
→ (o, pq, fds, (l, M [release; (s|||s′)])) µ

(Red-Get)

(o, pq, fds, (l, M [mid.get])) (mid, mc, c, v)
→ (o, pq, fds, (l, M [v])) (mid, mc, c, v)

(Red-Release)

M [release] 6= M ′[release; s///s′]

(o, pq, fds, (l, M [release]))
→ (o, pq :: (l, M [skip], fds, idle))

(Red-Poll)

b = (mode ≡ c)
(o, pq, fds, (l, M [mid?])) (mid, mc,mode, v)
→ (o, pq, fds, (l, M [b])) (mid, mc,mode, v)

(Red-Wait)

(o, pq, fds, (l, M [wait]))
→ (o, pq, fds, (l, M [false]))

(Red-Await)

g′ = g[true/wait]
(o, pq, fds, (l, M [await g]))
→ (o, pq, fds, (l, M [if g then skip

else release; await g′ fi]))

(Red-Reschedule)

(o, p :: pq, fds, idle)
→ (o, pq, fds, p)

(Red-Bind)

mbody(m, C) = (T x, U y, sr : T )

l = T x v, U y default(U), !T destiny mid q = (l, sr : T )

((oid, C), pq, fds, p) (mid, oid.m(v), s, null)
→ ((oid, C), pq :: q, fds, p) (mid, oid.m(v), a, null)

(Red-Return)

l(destiny) = mid
(o, pq, fds, (l, return v : T )) (mid, oid.m(v), a, null)

→ (o, pq, fds, idle) (mid, oid.m(v), c, v)

(Red-Context)

config → config′

config config′′

→ config′ config′′

(Red-Parallel)

config µ → config′ µ′ config′′ µ → config′′′ µ′′

dom(µ) = dom(µ′) = dom(µ′′) dom(config′) ∩ dom(config′′′) = ∅
config config′′ µ → config′ config′′′ µ′ � µ′′

Figure 3. The context reduction semantics. µ denotes a configuration of futures.
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Method invocation and return. A method call results in an activation on the
callee’s process queue. As the call is asynchronous, there is a delay between the
call and its activation, represented by the sleeping mode of a future. Subsequent
to the call, (Red-Bind) creates a process to run the method. This process is added
to the process queue, and the future changes its mode to active, thus preventing
multiple activations. When process execution is completed, the return value is
stored by (Red-Return) in the future identified by the destiny variable. This
future changes its mode to completed and the active process becomes idle.

Merge and release. Either branch of a merge may be selected for reduction,
captured by (Red-Merge1) and (Red-Merge2). When a branch of a merge statement
completes, (Red-Merge-Skip) schedules the other branch. If a release occurs inside
a merge, the other branch of the merge is the first candidate for rescheduling
— rescheduling is local to a process whenever possible. If both branches release,
then the process is released. Let σ map fields and local variables to their values.
Process release is based on the predicate enabled defined on guards, futures, and
states which determines whether a guard will not directly release:

enabled(wait, σ, µ) = false enabled(b, σ, µ) = b

enabled(v, σ, µ) = enabled(σ(v), σ, µ)
enabled(mid?, σ, µ) = mode ≡ c, where (mid,_,mode,_) ∈ µ

enabled(g ∧ g′, σ, µ) = enabled(g, σ, µ) ∧ enabled(g′, σ, µ)

The predicate is lifted to statements; enabled(await g, σ, µ) = enabled(g, σ, µ) is
the crucial case. In (Red-Merge-Release1), (Red-Merge-Release2) and (Red-Release),
the contexts and redexes do not factor expressions involving release uniquely:
these may be factored as both M [release] and M ′[release; s///s′]. A clause is
added to (Red-Release) to ensure that release; s///s′ is preferred.

Context and parallel reductions. A reduction applies to a subconfiguration by
rule (Red-Context). In (Red-Parallel) futures may be shared between concurrent
reductions, increasing the amount of concurrency expressible in the rules. As
the futures witnessed by one process may be changed by another, they need to
be recomposed in a consistent way. This is handled by a function µ � µ′ which
collects futures from µ and µ′ and resolves conflicting futures with the same mid.
New futures are located in config′ and config′′′.

Synchronization and self-calls. Reading (get) a future is blocking and can in-
troduce synchronization points in the code; for example, the statements y =
e!m(e); y.get model the usual notion of synchronous method call, as this code
blocks the active process after making a call to y until the call has completed.
A minor problem arises when we wish to perform a synchronous call to self,
this.m(e): the statements y = this!m(e); y.get lead to deadlock. In order to
execute a local method, the process needs to be released, as in the sequence
y = this!m(e); await y?; z = y.get. This sequence, however, does not capture
the direct transfer of control as it enables any other blocked process in the object
to be activated before the call to m. This ultimately means that the language
needs an extension to handle synchronous self calls. A solution is proposed in [18].
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3 An Example

We present a publisher-subscriber example wherein an event observed by a sen-
sor is published to objects subscribed to a service. To avoid bottlenecks when
publishing an event, the service delegates to a chain of proxy objects, where each
proxy object informs both the next proxy and up to limit subscribing clients.
We assume these classes exist: Sensor with method detectEvent, Client with
method signal, and List<T>, parametric in type T, with method add.

class Service {
Sensor sensor; Proxy proxy;
Service(int val) { // constructor

sensor = new Sensor; proxy = new Proxy(val);
}
void subscribe(Client cl) { proxy.add(cl) } // sync. call
void process() {

while (true) {
!Event fut = sensor!detectEvent();
proxy!publish(fut); // async. call
await fut?;

} } }

class Proxy {
List<Clients> myClients; Proxy nextProxy;
Event ev; int limit;
Proxy(int k) { // constructor

limit = k; myClients = new List(); nextProxy = null;
}
void add(Client cl) {

if (myClients.length < limit) { myClients.add(cl); }
else { if (nextProxy == null) nextProxy = new Proxy(limit);

nextProxy.add(cl); }
}
void publish(!Event fut) {

await fut?;
if (nextProxy != null) { nextProxy!publish(fut); }
ev = fut.get();
for (Client client : myClients) { client!signal(ev); }

} } // notify clients

4 The Assertion Language

Assertions are used to specify (invariant) properties of the configurations oc-
curring during computations generated by the operational semantics defined in
Sect. 2.2. Assertions are constructed from expressions e of the following form:

e ::= z | z.f | ops(ē)
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Here z can be this, a local variable, or a logical variable. Logical variables are
implicitly universally quantified. The expression z.f denotes the value of the
field f of the object denoted by the variable. By ops we mean an operation of
some given abstract data type. Assertions are Boolean combinations of Boolean
expressions.

In order to reason about the invocation and return of asynchronous method
calls, futures are explicitly modeled as objects. Thus reasoning relies on an en-
coding of method calls oid.m(e). Conceptually, a class representing futures is in-
troduced for every method in the program. For every possibly inherited method
m of a class C, we associate a class Future_C_m, with instance variables to store
the callee, the actual parameters, the mode, and the return value of a call to
the method. Given this class, the future (mid, oid.m(e),mode, v) corresponding
to a method call of a method m of an object oid of class C, is denoted by the
instance ((mid, Future_C_m), fds), where fds = callee 7→ oid, arg 7→ e, mode 7→
mode, val 7→ v. Note that we assume that some encoding of an enumerated type
with elements sleeping, active, and completed exists.

As a simple example, the assertion z.mode = c→ z.v > 0, where z is an (im-
plicitly) universally quantified logical variable ranging over all existing instances
of Future_C_m, states that every completed instance of Future_C_m stores a pos-
itive integer, or, in other words, that every completed invocation of the method
m (executed by an object of type C) has returned a positive integer. In a similar
manner we can express invariant properties of the actual parameters (stored in
the future objects).

5 The Proof System

The proof system consists of rules for proving that a local pre/postcondition
specification {p}s{q} is correct with respect to a global invariant I and a set of
monitor invariants. Here p and q are local assertions which only use expressions
that refer to the local state of an object via this; i.e., its fields and the local vari-
ables of one of its methods. Such assertions describe local properties of an object;
i.e., properties which are invariant over the executions of the other objects. The
global invariant describes invariant properties of the future objects, which form
the shared data structure that models the (asynchronous) interaction between
objects. The global invariant only refers to the future objects and their fields,
and as such is only affected by operations on futures. Monitor invariants are
local assertions associated with await statements that describe local properties
of an object which hold whenever the (associated) await statement is scheduled.

In order to reason about statements involving futures, i.e., the basic state-
ments r := e!m(ē), v := r.get, and await r?, we encode their operational
semantics as described in detail below. This encoding allows the application of
a (standard) weakest precondition calculus (as described by the first author [6],
which takes into account aliasing and object creation).
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The following proof rule derives the local specification of an asynchronous
method invocation: r := e!m(ē):

{p ∧ I}r := new Future_C_m(e, ē){q ∧ I}
{p}r := e!m(ē){q}

The premise of this rule is a specification which additionally establishes invari-
ance of the global invariant I over the statement r := new Future_C_m(e, ē). This
statement consists of a call to the constructor method of the class Future_C_m,
uniquely determined by the method m. This constructor method initializes the
newly created future object such that fds = callee 7→ e, arg 7→ e, mode 7→
s, val 7→ null, encoding the reduction rule (Red-Call). As a simple example, the
above assertion z.mode = c → z.v > 0 is invariant because the value of mode of
the newly created object is set to s.

The local specification of v := r.get is captured by the following proof rule,
corresponding to reduction rule (Red-Get):

{p ∧ r.mode = c ∧ I}v := r.val{q ∧ I}
{p}v := r.get{q}

The precondition of the premise additionally requires that the future r is in-
deed completed, and thus stores the return value. As an example, the assertion
r.mode = c→ r.v > 0 can be used in conjunction with the additional information
r.mode = c to establish v > 0 as a postcondition to the get operation.

The following proof rule captures the specification of a statement await r?:

(i ∧ r.mode = c ∧ I) → q

{i}await r?{q}

Here i denotes the monitor invariant (implicitly) associated with the await state-
ment. The premise consists of an implication establishing the postcondition in
case the return value is stored in the future object r.

The proof rule for deriving a local specification of a method definition is:

{p ∧ this = d.callee ∧ d.mode = s ∧ I}d.mode := a;x := d.arg{p′ ∧ I}
{p′}s{q′}

{q′ ∧ I}d.mode := c; d.val := e{q ∧ I}
{p}s; return e{q}

Here we denote by d the (distinguished) destiny variable of the method used to
denote its future object. The rule establishes the invariance of I over the state-
ments for retrieving the arguments to the call and for returning the value of e,
encoded as d.mode := a;x := d.arg and d.mode := c; d.val := e, encoding reduc-
tion rule (Red-Return). The additional information this = d.callee∧d.mode = s
ensures that this future object indeed records a sleeping (that is, not yet acti-
vated) method call to this callee. Note that in general the invariant I in the first
premise will be used to validate the assumptions about the formal parameters
expressed by the precondition p′ of the method body.
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The rules for the remaining statements are now briefly discussed. For exam-
ple, we have the following assignment axiom {p[e/v]}v := e{q}. Since p and q are
local assertions we do not have aliasing. Therefore the substitution [e/v] simply
replaces occurrences of v by e, provided e does not involve object creation. As-
suming that in local assertions a variable v of type C can only be compared for
equality, we can perform a simple contextual analysis of occurrences of v in the
case of an assignment v := new C(). For example, the assertion (v = e)[new/v]
is false for every expression e (other than v) because e will denote an ‘old’ ob-
ject (for details, see [6]). The rules for sequential composition, non-deterministic
choice, and the conditional are standard. The rule for the merge statement in-
volves an adaptation of the usual interference freedom test for shared variable
concurrency (with the significant simplification that in our setting this test is
local to the merge statement).

The proof system is used to prove that a class C maintains a set M of
monitor invariants which describe its release points. The verification of these
(local) monitor invariants involves a global invariant I and consists of proving
that each i ∈ M is invariant over each method body of C.1 Formally, for every
method body s; return e we have to prove that the specification

{i ∧ d′ 6= d}s; return e{i}

is correct with respect to the global invariant I and the following extended
monitor invariants of its await statements: i ∧ d′ 6= d ∧ j, where j ∈ M is the
monitor invariant of a given await statement in s. The additional information
d′ 6= d expresses that we are dealing with two different method invocations, each
with its own future represented by their local variables d′ and d.

5.1 Soundness and Completeness

For completeness we need to introduce the usual notion of auxiliary variables to
validate global synchronization constraints. Auxiliary variables extend the local
state of objects in order to record certain observations about internal scheduling,
sending a message, setting a return value, and about the method activations
themselves. A soundness proof then consists of a straightforward but tedious
induction on the length of the computation which atomically executes the state-
ments and their associated updates of the auxiliary variables. Conversely, com-
pleteness amounts to showing that assertions describing reachable configurations
‘follow the rules’ of the proof system. These assertions describe the external ob-
servable behavior of an object by means of a so-called communication history
variable, an auxiliary variable which denotes the sequence of generated messages
and which is updated by each method call, upon each method activation, and
by each return statement. Furthermore, in order to reason about the internal
process queue, we introduce a so-called scheduling history variable, an auxiliary
1 To avoid name clashes between the local variables of i and the method body, we

assume a variable convention wherein we rename the local variables x of i (and we
denote its renamed local variables by x′).
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variable which records the local state (i.e., the current values of the local vari-
ables and the values of the fields) whenever the guard of an await statement is
evaluated. Together these auxiliary history variables fix the internal computa-
tion of an object. This semantic property of these auxiliary variables forms the
heart of the completeness proof (due to space limitations details are omitted).

6 Related Work

Futures were devised as a simple means for expressing concurrency in a manner
that reduced the dependency on latency by enabling synchronization at the latest
possible time. Futures were discovered by Baker and Hewitt in the 70s [14], and
later rediscovered by Liskov and Shrira as Promises [20] and by Halstead in
the context of MultiLisp [13]. Futures appear in languages like Alice [23], Oz-
Mozart [24], Concurrent ML [22], C++ [19] and Java [25], often as libraries.
Futures in these languages are essentially the same as in our language.

All implementations associate a future with the asynchronous execution of
an expression in a new thread. The future is a placeholder object which is im-
mediately returned to the calling site. From the perspective of the calling site,
this placeholder is a read-only structure [21]. In some systems, this placeholder
can be explicitly manipulated by the programmer in order to write the resulting
data. In many implementations of futures, the placeholder can be accessed in
both modes (CML, Alice, Java, C++, etc), though typically the design is such
that both interfaces are presented separately — one to the caller and one to the
callee. The calculus λ(fut) [21] formalizes this distinction. Programming with
promises explicitly is quite low-level, so our language ties writing the resulting
value with method call return.

Futures can either be transparent or non-transparent. Transparent futures
cannot be explicitly manipulated, the type of the future is the same as the
expected result, and accesses made to the future transparently access the result
stored in the future, possibly after waiting (e.g., in Multilisp). Non-transparent
futures have a separate type to denote the future (e.g., !T is a future of type T ),
and future objects can be manipulated (e.g., in CML, Alice, Java, C++, and
our language). In addition, futures can also be dealt with lazily to give the effect
of call-by-need computation, by delaying the invocation of the asynchronous
computation until the moment when the future is accessed (e.g., in Alice).

Flanagan and Felleisen [10] present different semantic models of futures at
various levels of abstraction in terms of an abstract machine. Their goal was
to enable optimizations and program analyses. Their language was purely func-
tional in contrast to ours, which is an imperative, object-oriented language.

Caromel, Henrio, and Serpett [4] present an imperative, asynchronous object
calculus with transparent futures. Their active objects may have internal passive
objects which can be passed between active objects by first deep copying the
entire (passive) object graph. We do not provide this feature, which is orthogonal
to the issue discussed in this paper. To manage the complexity of reasoning
about distributed and concurrent systems, they restrict the language to ensure
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that reduction is confluent and deterministic, whereas our focus is on preserving
object invariants. No proof theory is presented for their calculus.

Actor systems [2] are concurrent processes which communicate exclusively
through asynchronous messages. An actor encapsulates its fields, procedures that
manipulate the state, and a single thread of control. Our objects are similar to
actors, except that our methods return values which are managed by futures, and
control can be released at specific points during a method execution. Messages
to actors return no result and run to completion before another message can be
handled. The lack of return makes programming with actors cumbersome.

Proof systems for actor languages exist [8], but these require explicit struc-
tures in the proof rules for reasoning about message queues, which our proof
theory avoids. Previous work by the third author [7] on the verification of asyn-
chronous method calls was performed in a language without first-class futures.
The paper took a transformational approach by encoding the language into a
sequential language with a non-deterministic assignment operator. However, the
Hoare rules described only the custom semantics. Various proof systems for mon-
itors exist [12, 15]. Our approach is distinct as we present a novel model of an
object that maintains multiple local invariants monitoring its release points and
a global invariant that describes its interaction with the other objects via futures.
The model is formalized and has a sound and complete proof theory.

7 Discussion and Future Work

We developed a formal model for a distributed, concurrent object-oriented lan-
guage with asynchronous method calls and futures. The model allows a novel
view of concurrent objects as maintainers of multiple local monitor invariants
and a global synchronization constraint. Having multiple monitor invariants al-
lows a proper treatment of local process variables. In contrast, monitor invariants
in existing models only refer to an object’s fields, complicating reasoning about
local variables in the context of the non-deterministic scheduling.

Although our language enables polling of futures (var? in an if statement),
which may be used to release the active process to allow flexible internal schedul-
ing in an object, to control interference of local proofs, our proof system restricts
polling to guards in await statements. We argue that this proof system is sig-
nificantly simpler than for the proof system for Java, based on previous work of
the first author [1]. Java’s proof system requires thread variables, and a general
interference freedom test due to the arbitrary interleaving of threads.

In fact, one can compare proof theories for various sublanguages of the lan-
guage presented here. Let us start with a base language without polling and
without release points await. Thus, get is the only operation on futures.

Adding await statements: The language without await does not require the
two history variables introduced in the completeness of our proof system; the
local scheduling history becomes superfluous. This language would have no inter-
nal rescheduling, rather it would resemble an actor-based language with futures
for managing the returns of asynchronous calls. The await statements in our lan-
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guage allow a clear separation of concerns between an object as maintainer of its
monitor invariants and as maintainer of the global synchronization constraint.
This is clearly reflected in the completeness proof where the monitor invari-
ance only describes the internal scheduling of the await statements, whereas the
global synchronization constraint expresses the externally observable behavior.

Adding polling to conditionals significantly increases the complexity of the
proof system. Interference freedom tests are necessary [1], because the required
information about the absence of return values can be invalidated by other ob-
jects. In contrast, reasoning about await statement with polling only requires
information about the presence of reply values, which cannot be invalidated.

This suggests that either the concurrency features of programming languages
should be chosen to admit a simple proof system, or that the complexity of
programming with such features should be measured in terms of the complexity
of their proof system, and that this should be made known to programmers.

Futures are now a part of a programmer’s toolbox: Java’s util.concurrent
library supports futures, and futures handle asynchronous calls to web services.
To facilitate correct programming, it is important to guide the design of language
features using proof theoretical considerations. To properly support language
design, both the soundness and completeness of the proof system are paramount.

In the context of the EU IST project Credo we are currently extending the
existing Creol implementation [18] with additional rewrite rules for modeling
futures.
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