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Abstract

The coordination language Reo supports compositional
system construction through connectors with real-time
properties that exogenously coordinate the interactions
among the constituent components into a coherent collab-
oration. In this paper, we present an operational seman-
tics for the channel-based component connectors of Reo
in terms of Timed Constraint Automata and introduce a
temporal-logic for specification and verification of their
real-time properties.

1. Introduction

The task of designing a complex concurrent system with
several components requires a coordination model that for-
malizes their mutual interactions. Reo [3] offers a pow-
erful language for implementation of coordinating compo-
nent connectors based on a calculus of mobile channels.
In this paper, we consider the real-time aspects of Reo
when the behavior specification of channels can involve
timing constraints. For instance, a deadline t for the avail-
ability of some data can be formalized as the behavior of
a FIFO channel that associates an expiration date, t, with
every data item that enters its buffer: the channel loses a
data item in its buffer t units of time after it enters through
its source (unless, of course, it is dispensed through its sink
in the meanwhile).
As the operational model for Reo connector circuits, we
use timed constraint automata (TCA) which extend their
untimed version [4] with the concepts borrowed from clas-
sical timed automata with location invariants [1, 10]. TCA
have two kinds of transitions: (1) internal changes of the
locations caused by some time constraints and (2) tran-
sitions that represent the synchronized execution of I/O-
operations at some of the ports. Using ideas similar to [4],
the construction of a timed constraint automaton from a
given timed Reo circuit can be performed in a composi-
tional manner, using composition operators on TCA that
model Reo’s operators join and hide to build complex con-

nectors out of instances of basic channel types.
The semantics of the TCA and timed Reo circuits relies on
timed data streams as in [5, 4], comprising a formalization
of the possible data-flow at each node over time. To specify
a desired coordination mechanism, we use a variant of lin-
ear temporal logic (LTL) with real-time constraints, which
we call timed scheduled-data-stream logic (TSDSL) and
has a semantics based on timed data streams. TSDSL es-
sentially relies on a combination of the time-abstract tem-
poral modalities in LTL and timed regular expressions [6].
We show through a series of examples how TSDSL can
serve as a specification formalism for (timed) Reo circuits,
sketch the ideas of a model checking algorithm, and explain
the relation of TSDSL with refinement relations.

Relatedmodels. There are several other related real-time
models that also focus on aspects of coordination. Timed
interface automata (TIA) [8] or real-time variants of I/O-
automata, e.g., [12, 9, 11], are related to TCA in the same
way as their untimed versions. I/O-automata rely on the
assumption of input-enablednesswhich is not required (and
would not make sense) in constraint automata.
The major goal of TIA is to provide a formalism to specify
and to check the compatibility of real-time components by
means of their interfaces. Our focus is on compositional
reasoning about (design and analysis of) channel-based co-
ordination mechanisms, based on their data-flow.
Although compositionality in timed Reo and TCA is in the
spirit of real-time process algebras, e.g., [13, 16], Reo fo-
cusses on composition of connectors out of a variety of ba-
sic channel types.

Organization of the paper. Timed constraint automata
are introduced in Section 2. In Section 3 we explain the
main features of Reo circuits and how timed constraint
automata can serve as their operational model. Timed
scheduled-data-stream logic (TSDSL) is introduced in Sec-
tion 4. Section 5 concludes the paper.



2. Timed constraint automata

Edges in timed constraint automata are labeled with tu-
ples (N,dc,cc,C) where N is a set of ports/nodes that syn-
chronously perform certain I/O-operations, dc is a data
constraint that specifies the concrete values that are trans-
ferred through those I/O-operations, cc is a clock con-
straint, and C is a set of clocks that are reset to 0. If N = /0
then the edge represents an internal move (in which case
dc = true). Before presenting the formal definition, we
give a simple example. Fig. 1 shows on its left a Reo circuit
with a 1-bounded FIFO-channel with expiration connecting
nodesA andB and a synchronous channel connecting nodes
B andC. A FIFO channel “with expiration” is a lossy chan-
nel that loses any data item that remains in its buffer longer
than its “expiration date” which in this case is 3 time units
after it enters the buffer of the channel. Thus, in this exam-
ple, there is an implicit deadline for the data transfer oper-
ation at node B. The picture on the right shows the TCA
corresponding to this Reo circuit. In the TCA on the right-

{A}, x := 0, d := dA

{B,C}, dB = dC = d

A B

x≤ 3
x= 3≤ 3 s̄(d)s

C

Figure 1. Reo circuit and timed constraint automaton
hand-side in Fig. 1, location s stands for the initial configu-
ration where the buffer is empty, while location s̄(d) repre-
sents the configuration where the buffer is filled with data
element d. If nodes B and C are ready for I/O-operations
within 3 time units, in location s̄(d) then we assume that
B takes an element d from the buffer and immediately for-
wards it to C. This corresponds to the transition labeled
with the set {B,C} and the data constraint dB = dC = d.
Although there is no explicit lower time bound for the de-
lay of the {B,C}-transition, our semantics forces some time
elapse in location s̄(d) before the {B,C}-transition can fire,
even if B and C are waiting for an input value. This is dif-
ferent in ordinary timed automata, but is needed here be-
cause a FIFO channel (by its definition) does not allow for
the synchronous transfer of data from its source to its sink
end. If B cannot transfer the element out of the FIFO buffer
(because no I/O operation is available on C to synchronize
with B), the message is lost 3 time units after entering s̄(d).
This is modeled by the invariance condition x ≤ 3 at loca-
tion s̄(d) which forces the automaton to leave s̄(d) if the
current value of x is 3.

Notation 2.1 (Data assignments, data constraints) In
the sequel, we assume finite and non-empty sets Data

consisting of data items that can be transferred through
channels, andN consisting of node names. A data assign-
ment denotes a function ! : N → Data where /0 #= N ⊆ N .
We use notations like ! =

[
A %→ !A : A∈ N

]
to describe the

data-assignment that assigns the value !A ∈ Data to every
node A ∈ N. Data constraints can be viewed as a symbolic
representation of sets of data assignments. Formally, data
constraints (denoted dc) are propositional formulas built
from the atoms “dA ∈ P” and “dA = dB” where A,B ∈ N
and P⊆ Data (plus the standard boolean connectors ∧, ∨,
¬, etc.). For N ⊆ N , DA(N) denotes the set of all data
assignments for the node-set N and DC(N) the set of data
constraints that at most refer to the terms dA for A ∈ N. We
write DA for

⋃
/0#=N⊆N DA(N) and DC for DC(N ). !

Notation 2.2 (Clock assignments, clock constraints)
Let C be a finite set of clocks. A clock assignment means
a function " : C → IR≥0. If t ∈ IR≥0 then "+ t denotes the
clock assignment that assigns the value "(x) + t to every
clock x ∈ C . If C ⊆ C then " [C := 0] stands for the clock
assignment that returns the value 0 for every clock x ∈ C
and the value "(x) for every clock x ∈ C \C. A clock
constraint (denoted cc) for C is a conjunction of atoms
of the form “x !" n” where x ∈ C , !" ∈ {<,≤,>,≥,=}
and n ∈ IN. CA(C ) (or CA) denotes the set of all clock
assignments and CC(C ) (or CC) the set of all clock
constraints. !

The symbol |= stands for the obvious satisfaction relation
for data (or clock) constraints which results from interpret-
ing data (clock) constraints over data (clock) assignments.
Satisfiability, validity, logical equivalence ≡ and logical
implication ≤ of data (clock) constraints are defined as
usual. For data constraints, we often use simplified nota-
tions such as “dA = d” rather than “dA ∈ {d}”.

Definition 2.3 (Timed constraint automata) A TCA is a
tupleT = (S,C ,N ,E ,S0, ic) where S is a finite set of con-
trol states (also called locations), C a finite set of clocks,
N a finite set of node names, and S0 ⊆ S a set of initial
locations. ic : S→ CC is a function that assigns to any lo-
cation s an invariance condition ic(s). The edge relation
E is a subset of S× 2N ×DC×CC× 2C × S such that
dc∈DC(N) for any edge e= (s,N,dc,cc,C, s̄) ∈ E . More-
over, we assume that all data and clock guards on the edges
and the invariance conditions are satisfiable. (For edges
with the empty node-set, we require a data constraint dc
with dc≡ true.) !

The automaton in Fig. 1 is a simplified picture for a TCA
where d is used as a data parameter. The presented TCA
has the location space S = {s}∪ {s̄(d) : d ∈ Data}. The
assignment “d := dA” in the parametric version stands for



the data constraint dA = d in the TCA. An interface spec-
ification of a timed sequencer that coordinates the data-
flow of two components via synchronous channels is shown
in Fig. 2. We assume the deadline t = 3 for the write-
operations, that is, the sequencer in location s waits up to t
time units to synchronize with component 1. If it fails then
the sequencer moves via the edge labeled with the empty
set to location s̄ and tries to synchronize with component 2,
and so on.

{A}, x< 3, x := 0

{B}, x< 3, x := 0

A B x≤ 3
x= 3 s̄

Comp 1 Comp 2

Sequencer

x≤ 3
s

x= 3

Figure 2. Timed sequencer

Definition 2.4 (State-transition graph of a TCA) Given
a TCA T as above, T induces a state-transition graph
AT = (Q,−→,Q0) as follows. The states are pairs
q= 〈s,"〉 consisting of a location s and a clock assignment
" . Thus, the state space is Q = S×CC. The set of initial
states is Q0 = {〈s0,0〉 : s0 ∈ S0,0 |= ic(s0)} where 0 stands
for the clock assignment that returns the value 0 for all
clocks. The transition relation −→ ⊆Q×2N ×DA× IR≥0
×Q is defined by the following rules:

(s,N,dc,cc,C, s̄) ∈ E ,
t>0 s.t. "+ t̄ |= ic(s) for all 0< t̄ ≤ t
("+ t)[C := 0] |= ic(s̄) and "+ t |= cc
! ∈ DA(N) s.t. ! |= dc

〈s,"〉 N,! ,t−−→ 〈s̄,("+ t)[C := 0]〉

If N = /0, we use in addition the same rule with t = 0:

(s, /0,true,cc,C, s̄) ∈ E , " [C := 0] |= ic(s̄), " |= cc

〈s,"〉 /0, /0,t−−→ 〈s̄," [C := 0]〉

A state q = 〈s,"〉 is called terminal iff it has no outgoing
transitions, but allows the possibility for unbounded pas-
sage of time, i.e., " + t |= ic(s) for all t> 0. A time-lock
refers to a state q= 〈s,"〉 that has no outgoing transitions
and there exists a t>0 such that "+ t #|= ic(s). T is called
time-lock free iff AT does not contain a reachable time-
lock. !

Edges with non-empty node-sets can fire only after some
positive delay. This reflects the general idea of constraint
automata where all observable activities that occur at the
same time instant (i.e., atomically) are collapsed into a sin-
gle transition.

Notation 2.5 (Runs, time divergence) Let T be a TCA
as before and q= 〈s,"〉 a state in AT . A q-run (or briefly
run) in T denotes any (finite or infinite) sequence of suc-
cessive transitions in AT starting in state q. Formally, a
q-run has the form

q= q0
N0,!0,t0−−−→ q1

N1,!1,t1−−−→ . . .
where q0 = q. q is called initial if q0 ∈Q0. q is called time
divergent if q is infinite and t0+ t1+ . . . = # . Maximality
of a run means that it is either time divergent or finite and
ends in a terminal state. !
Intuitively, Ni is the set of nodes in state qi that are sched-
uled to synchronously perform the next I/O-operations,
while !i represents the concrete values that are exchanged
through those operations at the nodes A ∈ Ni. The value ti
stands for the delay.

Notation 2.6 (TSD stream) A timed scheduled data
stream for a node-set N denotes any (finite or infinite)
sequence $ = (N0,!0,t0), (N1,!1,t1), . . . ∈ (2N × DA
× IR≥0)% such that !i ∈ DA(Ni), 0 < t0 < t1 < .. . and
limi→% ti = # if q is infinite. The empty TDS stream
is denoted by the symbol & . The length |$| ∈ IN ∪ {#}
is defined as the number of triples (N,! ,t) in $. The
execution time '($) is # if $ is infinite, tk if |$| = k+ 1,
and 0 if $ = & . We write TSDS(N ) or simply TSDS to
denote the set of all TSDS for node-setN . !
Notation 2.7 (TSDS-language of a TCA) If q is a run in
a TCA T as above then the induced TSD stream $(q) =
(Ni0 ,!i0 , t̄i0),(Ni1 ,!i1 , t̄i1), . . . is obtained from q by (1) re-
moving all transitions in q with the empty node set, (2)
building the projection on the transition labels, and (3) re-
placing the sojourn times ti by the absolute time points
t̄i = t0 + . . . + ti. The generated language of a state q in
AT is L (T ,q) = {$(q) : q is a maximal q-run }. The
language L (T ) consists of all TSD streams $(q) where
q is a maximal and initial run. !
For instance, the language of the timed sequencer in Fig. 2
consists of all TSD streams $ = ((Ni,!i, t̄i))i where Ni ∈{
{A},{B}} and t̄i+1− t̄i>3 if Ni+1 = Ni.

3. Timed Reo circuits

Reo’s notion of channel is far more general than its com-
mon interpretation and encompasses any primitive commu-
nication medium with exactly two ends. Channel ends are
classified into source ends through which data enter and
sink ends through which data leave their respective chan-
nels. A write operation can be performed on the source
end of a channel, providing data to enter into the channel,
while a take operation can be performed on the sink end of
a channel to obtain data out of the channel. We explain the
workings of Reo with a few examples of its basic channel
types and formalize their behavior by TCA.



FIFO channels. The simplest form of an asynchronous
channel is a FIFO channel with one buffer cell, which we
denote as FIFO1. A FIFO1 channel is graphically repre-
sented by a small box in the middle of an arrow. The buffer
is assumed to be initially empty if no data item is shown
in the box in its graphical representation (as in the example
below). The graphical representation of a FIFO1 channel
whose buffer initially contains a data element d is the same
except that it also shows a d inside the box representing its
buffer.

≤ t
B BAA

On the left in this figure, we have a normal FIFO1 chan-
nel which keeps a data item in its buffer until it is taken
out through its sink. On the right we show a lossy variant,
called expiring FIFO1, where a data item is lost if it is not
taken out of the buffer through the sink end of the channel
within t time units after it enters through its source end.

{A}

s x= t
d := dA

x≤ t
s̄(d)s

d := dA
{A}, x := 0

{B}, dB = d

¯̄s(d)

{B}, x< t, dB = d

d := dA
{A}, x= t, x := 0

Figure 3. TCA for a normal and an expiring FIFO1 chan-
nels

Synchronous channels. A synchronous channel, de-
picted as a solid arrow, has one source- and one sink-end.
Write and take operations must occur simultaneously on
the two ends of this channel, which is formalized by a TCA
with a single location:

A B s {A,B}
dA = dB

A P-producer is a synchronous channel that, like a nor-
mal synchronous channel, allows write and take operations
to succeed atomically on its source and sink ends, respec-
tively, except that the value dispensed through this chan-
nel’s sink end is always a data element d ∈ P, regardless of
the value it consumes through its source end.

A B s {A,B}
dB ∈ PP

A lossy synchronous channel (depicted as a dashed arrow)
is similar to a normal synchronous channel, except that it
always accepts all data items through its source end. If it
is possible for it to simultaneously dispense the data item
through its sink (e.g., there is a take operation pending on
its sink) the channel transfers the data item; otherwise the
data item is lost.

A B s {A,B}
dA = dB

{A}

The above figure shows a TCA that captures the general
“possible” behavior of a lossy synchronous channel. To
model the context-sensitive behavior of a lossy channel
where the {A}-transition is impossible if B is ready to syn-
chronize, the concept of priorities can be used. More exotic
channels permitted in Reo include the synchronous drain
that has two source ends. Because a drain has no sink
end, no data value can ever be obtained from this chan-
nel. Thus, all data accepted by this channel are lost. A
synchronous drain accepts a data item through one of its
ends iff a data item is also available for it to simultaneously
accept through its other end as well.

A B {A,B}

Timer. The source end of a t-timer channel accepts any
input value d ∈ Data and returns on its sink end a timeout
signal after a delay of t time units.

A B
s s̄

x≤ t
{B},x= t

{A},x := 0

t

dB = “timeout”

dB = “timeout”
{A,B}, x= t

x := 0

A t-timer with the off-option allows the timer to be stopped
before the expiration of its delay when a special “off” value
is consumed through its source end. Similarly, the reset-
option allows the timer to be reset to 0 after it has been
activated when a special “reset” value is consumed through
its source end. The following figure shows a t-timer with
both the reset- and the off-options.

A B
s s̄

x≤ t
{B},x= t

{A},x := 0

t

dB = “timeout”

dB = “timeout”
{A,B}, x= t

x := 0
{A},dA = “off”

{A},dA = “reset”, x < t
x := 0

x< t

A timer with early expiration makes the timer produce its
timeout signal through its sink and reset itself when it con-
sumes a special “expire” value through its source.

A B
s s̄

x≤ t
{B},x= t

{A},x := 0

t

dB = “timeout”

dB = “timeout”
{A,B}, x= t

x := 0
{A,B},x< t

x := 0
dB = “timeout”
dA = “expire”
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Figure 4. Example construction of a Reo circuit

In some cases, it is useful to have a timer that is initially
activated. In the graphical representation of this timer, we
simply put the word “on” under its circle-symbol. In its
TCA, we declare s̄ as the initial location (rather than s).

Reo circuits. Complex connectors have graphical repre-
sentations, called Reo circuits, which can be generated by
applying certain composition operators to channels. We
may think of a Reo-circuit as a finite graph where the
nodes are labeled with pairwise disjoint, non-empty sets of
channel ends and where the edges represent the established
channels. The major operations to create Reo connector
circuits are join and hiding.
To construct a Reo circuit, we start with several instances of
basic channels and organize them in a graph where initially
each channel end constitutes a separate node, and each pair
of nodes are connected by an edge representing their re-
spective channel. We then apply a series of join operations
that take as input two nodes A and B and combine them
into a new node C. In this way, several channel ends may
coincide on one node. If all channel ends coincident on a
node C are source ends, C is called a source node and it
acts as a replicator: writing a data item to a source node
succeeds when all of its coincident channel ends are ca-
pable of accepting the data item simultaneously, in which
case the data item is atomically copied into every one of the
source ends coincident onC. If all channel ends coincident
on C are sink ends, C is called a sink node and it behaves
as a merger: an attempt to take a data item from a sink
node succeeds when at least one of its coincident channel
ends has a suitable value to offer, in which case the suit-
able value available through one of these channel ends is
non-deterministically selected for the take operation. If C
contains both source and sink channel ends thenC is called
a mixed node and it behaves as a self-contained pumping
station, combining the replicator and merger behavior of
source and sink nodes. No take or write operation can be
performed on a mixed node; a mixed node autonomously
selects suitable values available through its coincident sink
ends (merger behavior) and copies them to its coincident
source ends (replicator behavior).
The hiding operator allows to create “components” by

putting a thick box around a circuit, insulating all of its
mixed nodes inside the box and allowing access to its sink
and source nodes, placed on the border of the box, only.
The idea is that the mixed nodes are internal to the com-
ponent and no other component can modify or connect to
them. Formally, we make hidden (mixed) nodes invisible
and abstract their names away.
Fig. 4 demonstrates how to built a Reo circuit via join and
hiding. Mixed node I serves as an initializer which ac-
tivates the timer. Either A and B synchronize before the
timer expires or the timeout signal occurs at T (after ex-
actly t time units). In either case, the buffer is refilled and
the whole procedure restarts.
When modeling Reo circuits by (timed) constraint au-
tomata the locations stand for the configurations of the cir-
cuits (e.g., contents of the FIFO channels) while the transi-
tions stand for the possible data-flow at one time instance
and its effect on the configuration. Intuitively, if we re-
gard a circuit itself as a component, the source nodes of the
circuit act as the input ports, and its sink nodes as the out-
put ports of the component. The data-flow through mixed
nodes is totally specified by the circuit.

Example 3.1 The following figure shows on its left how an
expiring FIFO1 channel can be constructed out of a normal
FIFO1 channel and a timer set to expire after t time units.
On the right we have a circuit that ensures the lower bound
“>t” for a take operation on B; it yields a FIFO1 channel
that guarantees every data item will remain in its buffer at
least t time units.

A B

t

A B

t

We may also control the frequency of data transfer in syn-
chronous channels with time-constrained channels. In the
following figure, on the left, data-flow from A to B is pos-
sible only once every≥ t time units.

A B

t

A B
t onexpire

C



The t-timer with early expiration in the circuit on the right
ensures that as long as data items are available at A, they
will be consumed at least once every t time units. When-
ever a take operation is performed on C, the data item
available at A is transferred through B to C via the syn-
chronous and the lossy synchronous channels that connect
these nodes. The transfer at A simultaneously produces
an “expire” signal (through the P-producer connected to
A, where P is the singleton data set {expire}) which pre-
maturely fires the timer channel, enabling the synchronous
drain to allow the data transfer at B. If no take operation
occurs at C, the timer produces its timeout-signal after t
time units, enabling the transfer of a data item from A to
B, because the lossy synchronous channel at B always ac-
cepts (and in this case loses this data item). (Because the
two ends of the timer always have to synchronize in this
circuit, the assumption that the timer is initially on is es-
sential, since otherwise it can never be started.) !

Example 3.2 (Timed sequencer) The timed sequencer in
Fig. 2 can be realized by the Reo circuit shown in Fig. 5
(and hiding all nodes except for A and B). Here, we use a t-
timer with early expiration which is assumed to be initially
switched on. A can transfer a value only if D simultane-
ously also takes a value from the upper buffer. The expir-

0 t

A

B

0
≤ t

≤ t

expire
on

D

F

E

C

H

I

J

G

expire

Figure 5. Reo circuit for a timed sequencer
ing FIFO1 channel allows this to happen only at some point
in time t0< t. If this happens, an expire-signal is sent (via
the P-producer from D to G where P is the singleton data
set {expire}) which forces the timeout-signal to become
available at H. Because the buffer of the left FIFO1 chan-
nel is full and it is connected at E through a synchronous
drain and a lossy synchronous channel via J toH, the avail-
ability of the timeout-signal at H triggers the synchronous
transfer of the contents of the left FIFO1 channel into the
right FIFO1. The replication behavior of H also attempts
to simultaneously write a copy of the timeout-signal into
the top lossy synchronous channel connected to H. How-
ever, because at this point in time (i.e., t0), there is no data
available at C, the synchronous drain connected to C pre-

vents I from participating in the transfer of this copy of the
timeout-signal from H; therefore, the lossy synchronous
channel connectingH to I loses this data. At this point, the
same behavior symmetrically repeats with B.
If A has no value to transfer within the first t time units
then D does not transfer the data element out the buffer but
the timeout signal becomes available at H at time t. Simul-
taneously, the message in the buffer of the upper expiring
FIFO1 channel is lost. At this point in time (i.e., t), there
is no data available at C, and the synchronous drain con-
nected to C prevents I from participating in the transfer of
a copy of the timeout-signal fromH; the lossy synchronous
channel connecting H to I loses this data.
On the other hand, node E can take the data element out
of the buffer of the left FIFO1 channel. Also G is ready to
start the timer again. Thus, H synchronizes with the nodes
J, E and G which yields a configuration symmetric to the
initial one with B instead of A.

{B,F,GF ,G,H, I,C}, x < t, x := 0

x≤ t
{H,C, I,GC,G}, x= t, x := 0

x≤ t
{H,J,E,GE ,G}, x = t, x := 0

{A,D,GD,G,H,J,E}, x< t, x := 0

The above figure shows the TCA (before hiding) where we
skip the data constraints.1 !

Remark 3.3 (Time-constraints for the I/O-operations)
In the Reo circuit in Fig. 6, node B is a mixed node which
is “always” ready to consume a message from the buffer
of the expiring FIFO1 channel because the synchronous
drain on its right is “always” ready to dispose of any value.
The TCA for this circuit has a TSD stream of the form
({A}, [A %→ d],0),({A}, [A %→ d],4),({A}, [A %→ d],8), . . .
where A continuously transfers data items into the buffer
of the expiring FIFO1 channel, which in turn loses them
all because the data transfer at B takes longer than the
specified expiration bound of 3 time units (e.g., because
the synchronous drain is too slow). In fact, the above

{A}, x := 0

{B}

A B

x≤ 3
x= 3

≤ 3
s̄s

Figure 6. When does B perform a take-operation?
1In addition to the node-names used in the circuit, we use the names

GE , GC, GD and GF to make clear which take-operation is performed
on node G. Such auxiliary names will also be used in the compositional
approach to model the merge semantics.



circuit makes no assumptions about the possible delay of
B’s data transfer operation. Its TCA involves an enabled
transition with a node-set consisting of a mixed node with
an unbounded delay.
One possibility to avoid such scenarios is to assign dead-
lines to edges e = (s,N,dc,cc,C, s̄) where N consists of
mixed nodes. For instance, assigning a deadline of 2 to
the {B}-edge in the above example ensures that all values
transferred by A are eventually taken out of the buffer by
B. However, the timing behavior of the nodes (deadlines
or lower time bounds for I/O-operations) can also be made
explicit at the syntax level of Reo circuits, using an appro-
priate combination of Reo’s timed channels. For instance,
the deadline of 2 in the above example can be guaranteed
by a 2-timer with the off-option as follows:

A B≤ 3

2

off

!

We now define the join operator on TCA which captures
the replicator semantics of source (or mixed) nodes. It can
serve as the semantic operator for the join of two nodes
where at least one of them is a source node. We assume
that we are given the TCA T1 and T2 for two fragments
R1 and R2 of a Reo circuit and that we want to perform
the join operations for the nodes Bi (in T1) and B̃i (in T2),
i = 1, . . . ,n, where at least one of the nodes Bi or B̃i is a
source node (i.e., has no coincident sink channel end). We
first rename B̃i into Bi and then apply the following join
operator to T1 and T2.

Definition 3.4 (Join for TCA) Given two TCA Ti =
(Si,Ci,Ni,Ei,S0,i, ici), i = 1,2, with disjoint clock sets,
the product T1 !" T2 is defined as an TCA with the lo-
cation space S = S1× S2, the set S0 = S0,1 × S0,2 of ini-
tial locations, the node-set N = N1 ∪N2, and the clock
set C = C1 ∪ C2. The location invariance is given by
ic(〈s1,s2〉) = ic1(s1)∧ ic(s2). The edge relation E is ob-
tained through the following rules. The first rule concerns
the “synchronization case” where two edges with com-
mon nodes are combined as well as the case where two
edges with non-empty “local” node-sets are taken simulta-
neously:

(s1,N1,dc1,cc1,C1, s̄1) ∈ E1,
(s2,N2,dc2,cc2,C2, s̄2) ∈ E2,

N1∩N2 = N2∩N1, N1 #= /0, N2 #= /0, dc1∧dc2 #≡ false

(〈s1,s2〉,N1 ∪N2,dc1∧dc2,cc1∧ cc2,C1∪C2,〈s̄1, s̄2〉) ∈ E

The second rule applies to edges all of whose involved
nodes are local to only one of the automata:

(s1,N1,dc1,cc2,C1, s̄1) ∈ E1, N1∩N2 = /0
(〈s1,s2〉,N1,dc1,cc1,C1,〈s̄1,s2〉) ∈ E

and its symmetric rule. In particular, the latter rule applies
to transitions with empty node-sets. !
A correctness result for the join operator is presented in the
full version.
To mimic the merge semantics of sink (or mixed) nodes we
use the same technique as in [5, 4]. To join two nodes A
and B where each of them contains at least one sink end
we (1) choose a new node-name, say C, and (2) return
TMerger(A,B,C) !" TA !" TB whereTA andTB are the TCA
that model the sub-circuits containing A and B respectively,
and TMerger(A,B,C) has the following form:

{A,C}
dA = dC

{B,C}
dB = dC

Hiding a node-set M in a TCA removes all M-nodes from
its edges. However, given an edge with a node-set con-
sisting of M-nodes only, we must ensure that this edge can
be taken only after some positive delay. We model this by
using an additional clock.

Definition 3.5 (Hiding for TCA) Given a TCA T =
(S,C ,N ,E ,S0, ic), a new clock y /∈ C , and M ⊆ N , we
define ∃M[T ] = (S,C ∪{y},N \M,E ′,S0, ic) where E ′ is
obtained by the rule:

(s,N,dc,cc,C, s̄) ∈ E , (N = /0∨N \M #= /0)
(s,N \M,

∨

!∈DA(M)

dc[A/!A : A ∈M],cc,C∪{y}, s̄) ∈ E ′

(s,N,dc,cc,C, s̄) ∈ E , /0 #= N ⊆M
(s, /0,true,cc∧ (y>0),C∪{y}, s̄) ∈ E ′

Here, dc[A/!A : A ∈M] is derived from dc by the syntactic
replacement of the term dA with the value !A ∈Data for all
A ∈M. (More precisely, we replace “dA ∈ P” with true or
false, depending on whether or not !A belongs to P.) !
Example 3.6 The TCA for the circuit in Fig. 4 can be ob-
tained by joining the TCA for all of its involved channels
together with TMerger(F1,F2,F).

x≤ t

x := 0
{I}

{A,B,C,F1,F}

x= t
{D,E,F2,F,T}

x≤ t

x := 0x= t
x= t {A,B}

x= t

{D,E,F2,F,T, I}

{A,B,C,F1,F, I}x= t
x= t x= tx= t

{A,B}{T}

{T} y> 0

y := 0 y := 0



The above figure shows the resulting TCA before and after
hiding. (For simplicity, we skip the data constraints and
irrelevant resettings of y). !

Of course, using arbitrary combinations of timed channels
can lead to TCA with time-locks. However, using (mod-
ifications of) standard region- or zone-graph algorithms
[1, 10] we may check the time-lock freedom of a given Reo
circuit.

4. Timed Scheduled-Data-Stream Logic

In this section, we introduce Time Scheduled-Data-Stream
Logic (TSDSL) which is a real-time variant of LTL and
allows to reason about the observable data-flow of a Reo
circuit by means of the TSD streams generated by its un-
derlying TCA. Instead of the modality© (next step), TS-
DSL uses formulas of the type 〈〈(〉〉) which consist of a
so-called timed scheduled-data expression ( and a formula
) . This type of formulas is inspired by propositional dy-
namic logic and extended temporal logic [15]. The timed
scheduled-data expressions are variants of timed regular
expressions [6] built from atoms of the form 〈N,dc〉. The
TSD expressions specify sets of finite TSD streams. The in-
tuitive meaning of 〈〈(〉〉) is that every initial run has a finite
prefix generating a word of the language of ( such that )
holds for its corresponding suffix.

Syntax of TSDSL. In the sequel, we assume a fixed finite
and non-empty set N of nodes. The abstract syntax of
TSDSL-formulas is given by the following grammar:

) ::= true
∣∣∣ )1∧)2

∣∣∣ ¬)
∣∣∣ 〈〈(〉〉)

∣∣∣ )1U)2

where( is a timed scheduled-data expression (TSD expres-
sion) built by the grammar:

( = 〈N,dc〉
∣∣∣ (1∨(2

∣∣∣ (1∧(2
∣∣∣ (1;(2

∣∣∣ (∗
∣∣∣ ( I

Here, N is a non-empty node-set, dc a satisfiable data con-
straint for N, and I ⊆ IR≥0 ∪ {#} a (possibly unbounded)
time interval with its upper-bound in IN ∪{#}. The mean-
ings of (1 ∨ (2 (union, choice), (1 ∧ (2 (intersection)2,
(1;(2 (concatenation, sequential composition), and ( ∗

(Kleene closure, finitely many repetitions) are obvious. ( I

has the same meaning as ( , except for the additional re-
quirement that the total execution time falls in the time in-
terval I.
Intuitively, 〈〈(〉〉) holds for a TCA iff all its TSD streams
have a finite prefix that generates an (-stream and ) holds

2Standard regular expressions do not contain an intersection operator
(although regular languages are closed under intersection). However, as
pointed out in [6], in timed settings, the class of timed languages induced
by timed regular expressions without an explicit intersection operator is
not closed under intersection.

for its remaining suffix. The dual operator for 〈〈(〉〉) is
[[( ]]) = ¬〈〈(〉〉¬) which holds for a TCA iff for each of
its TSD streams $ and all prefixes of $ that generate an
(-word, the formula ) holds for the corresponding suffix
of $. Other boolean connectives, like disjunction ∨ or im-
plication→, are derived in the usual way.

Simplified notation. We often skip the semicolon for the
concatenation operator (i.e., (* stands short for ( ;* ). We
simply write 〈N〉 for 〈N,true〉 and often omit brackets: e.g.,
〈A,dc〉 is short-hand for 〈{A},dc〉 and 〈〈N〉〉 for 〈〈〈N〉〉〉. We
write 〈. . .A . . .〉 to denote the disjunction of the expressions
〈N〉 where N ranges over all subsets ofN that contain the
node A. 〈¬A〉 stands for the disjunction of all expressions
〈N〉 where N ranges over all non-empty node-sets that do
not contain A. 〈·〉 denotes the disjunction of all atoms 〈N〉
where N is an arbitrary non-empty node-set. 〈〈·〉〉) stands
for 〈〈〈·〉〉〉) . We also often skip true and write 〈〈(〉〉 for
〈〈(〉〉true: e.g., the TCA for the normal FIFO1 channel
(Fig. 3) satisfies the formula

[[(〈A〉〈B〉)∗]]〈〈A〉〉 ∧ [[(〈A〉〈B〉)∗〈A〉]]〈〈B〉〉

which states that the data-flows at nodes A and B alternate,
starting with A.

Derived operators. The standard next step operator is
derived as ©) = 〈〈·〉〉) In particular, ©true asserts the
occurrence of some observable data-flow, while ¬© true
states that data-flow has stopped. The modalities even-
tually and always can be derived as usual by definitions
♦) = trueU) and !) = ¬♦¬) . For instance, the fol-
lowing TSDSL formula specifies the behavior of a normal
FIFO1 channel (cf. Fig. 3):

!
(

∧

d∈Data
[[〈A,dA = d〉]]〈〈〈B,dB = d〉〉〉

)
∧!(〈B〉 →©〈A〉)

The expiring FIFO1 channel in Fig. 3 satisfies the TSDSL
formula

!
(

∧

d∈Data
[[〈A,dA = d〉]](〈〈〈B,dB = d〉<t〉〉∨¬〈〈〈·〉<t〉〉)

)

which expresses the fact that within t time units after A’s
write-operation either B takes the element from the buffer
or there is no observable data-flow. For the timed sequencer
(Fig. 2 and Example 3.2) the following formula holds

![[A]]
(
〈〈〈B〉≤t〉〉∨¬〈〈〈·〉≤t〉〉

)

stating that whenever data-flow is observed at A, within the
next t time units there is either data-flow at B or no observ-
able data-flow at all.
The weak variant Ũ of until is obtained as )1Ũ)2 =
()1U)2) ∨ (!)1). For instance, the t-timer with reset-
option (but without the off-option) fulfills the formula



$ |= true
$ |= )1∧)2 iff $ |= )1 and $ |= )2
$ |= ¬) iff $ #|= )
$ |= )1U)2 iff ∃ t ∈ IR≥0 s.t. $ ↑ t |= )2

and $ ↑ + |= )1 for all + with 0≤ +< t
$ |= 〈〈(〉〉) iff ∃ t ∈ IR≥0 s.t. $ ↓ t ∈ L (() ∧ $ ↑ t |= )

Figure 7. Satisfaction relation for TSDSL-formulas

![[A]]
(
〈〈〈A,dA = reset〉<t〉〉Ũ〈〈〈B,dB = timeout〉〉〉

)
.

To provide the formal definition of the semantics of a TSD
expressions and TSDSL-formulas we need some additional
notation for working with TSD streams.

Notation 4.1 (Time cuts, concatenation, Kleene closure)
Let $= (N0,!0, t0), (N1,!1,t1), . . .. be a TSD stream as in
Notation 2.6. For a point in time t ∈ IR≥0, we define $ ↑ t
as the suffix of $ that ignores every data-flow that occurs
before t and formalizes the observable behavior in the time
interval [t,%[. That is, $ ↑ t = & if |$| = k+ 1<# and
tk < t. Otherwise, $ ↑ t = (Nk,!k,tk), . . .) where k is the
smallest index such that tk ≥ t.
$ ↓ t is the TSD stream that describes the data-flow in the
time interval [0, t[. That is, $ ↓ t = & if $ = & or t0 ≥ t.
Otherwise,$ ↓ t = (N0,!0,t0), . . . ,(Nk,!k,tk)where k is the
largest index such that tk < t.
The concatenation of finite TSD streams is defined as fol-
lows. We define $;& = & ;$ = $. If $1 = (N0,!0, t0),
. . .,(Nn,!n, tn) and $2 =(M0,,0,+0), . . .,(Mm,,m,+m) then
$1;$2 is (N0,!0,t0), . . ., (Nn,!n,tn), (M0,,0,tn + +0), . . .,
(Mm,,m, tn++m). If L and L̃ are TSDS-languages with the
same node-setN then L;L̃ =

{
$ ; $̃ : $ ∈ L, $̃ ∈ L̃

}
and

L∗ =
⋃
n≥0Ln where L0 = {&}, Ln+1 = Ln;L. !

Semantics of TSD expressions and TSDSL-formulas.
We define L (() ⊆ TSDS by structural induction.
L (〈N,dc〉) is the set of all TSD streams of length 1 that
have the form (N,! ,t) where ! |= dc. We define L ((1 ∨
(2) = L ((1)∪L ((2), L ((1 ∧(2) = L ((1)∩L ((2),
L ((1;(2) = L ((1);L ((2) and L ((∗) = L (()∗. The
semantics of time-constrained expressions is formalized by
L (( I) = {$ ∈ L (() : '($) ∈ I}.3 The satisfaction re-
lation |= for TDSL-formulas and TSD streams is defined
by structural induction as shown in Fig. 7. For the de-
rived [[. . .]]-operator, we obtain $ |= [[( ]]) iff for all t ≥ 0
we have: $ ↓ t ∈ L (() implies $ ↑ t |= ) . We de-
fine L ()) =

{
$ ∈ TSDS(N ) : $ |= )

}
and define log-

ical equivalence ≡ of TSDSL-formulas as )1 ≡ )2 iff
L ()1) = L ()2). If T is a TCA and q a state in AT then

3Recall that '($) denotes the execution time of $ (see Notation 2.6).

q |= ) iffL (T ,q) ⊆ L ()). Moreover, we define T |= )
iffL (T ) ⊆ L ()).

The TSDSL Model Checking problem addresses the
question of whether T |= ) holds for a given TCA T and
TSDSL formula ) . We briefly sketch the main ideas of a
TSDSL model checking algorithm that relies on variants of
standard automata-based algorithms for LTL and (timed)
regular expressions.
First, we switch from ) to ¬) which we regard as a for-
mula of (untimed) LTL with action labels. Here, 〈〈(〉〉 is
treated as a next step operator with the label ( . Then,
we may apply standard techniques modified for the action-
labeled case, to construct a nondeterministic Büchi automa-
ton B for ¬) , whose transitions are labeled with the ex-
pressions ( that occur in sub-formulas 〈〈(〉〉- of ) . We
now turnB into a TCA TB with Büchi acceptance condi-
tion.
For this, we first construct a TCA T( for every TSD ex-
pression ( that occurs in B as a transition-label. T( has
a unique initial location, called start((), and a location
stop(() such that L (() is the set of all TSD streams $
that are induced by a finite run in T( starting in start(()
and ending in stop((). The construction of the TCA T( is
by structural induction, essentially as described in [6]. For
instance, for ( = . I we introduce one new clock x that is
not used in T. and perform the following construction for
T( :

T.start(() start(.) stop(.)
stop(()

x := 0 x ∈ I

The invariance condition “x ∈ I” ensures that location
stop(() can be entered only in runs where the execution
time lies within the time interval I. (Here, the edges from
stop(.) to stop(() are labeled with the empty node-set and
data and clock constraint true.)
The TCA TB is now obtained as follows. The locations in
TB consist of the states in the Büchi automatonB and the
locations in the TCAT( .4 We then replace every transition
q (−→ p inB with the following fragment of TB:

T(
start(() stop(()

reset all clocks
q p

in T(

We then haveL (TB) = L (¬)) where Büchi acceptance
is assumed for TB . Thus, by Corollary ??, T |= ) iff
L (T !" TB) = L (T )∩L ()) = /0. Hence, we may ap-
ply (modifications of) the standard region graph algorithms
to check for emptiness of timed automata [1].

4We assume that the state spaces and clock sets are disjoint and that
for any TSD expression ( that occurs more than once in B a copy of T(
is used.



TSDSL versus refinement relations. Let T1 and T2 be
two TCA with the same node-setN . Clearly, ifL (T1) ⊆
L (T2) then, for any TSDSL-formula ) , T2 |= ) implies
T1 |= ) . Thus, ifL (T1) = L (T2) thenT1 andT2 satisfy
exactly the same TSDSL-formulas. A sufficient decidable
criterion for checking (TSDLS- or) language-equivalence
of two TCA is to switch to a coarser equivalence cor-
responding to timed bisimulation for ordinary timed au-
tomata [7]. In our setting, a timed bisimulation for a TCA
T is the coarsest equivalence ∼ on the state space Q of
the induced state-transition graph AT such that for all q1,
q2 ∈ Q with q1 ∼ q2 and all N ⊆ N , ! ∈ DA(N), t ∈ IR≥0:

∀q1
N,! ,t−−→ p1 ∃p2 ∈Q s.t. q1

N,! ,t−−→ p2 and p1 ∼ p2.

The simulation relation is defined as the coarsest binary re-
lation 9 on the state space Q of AT such that for all q1,
q2 ∈ Q with q1 9 q2 and all N ⊆ N , ! ∈ DA(N), t ∈ IR≥0:

∀q1
N,! ,t−−→ p1 ∃p2 ∈Q s.t. q1

N,! ,t−−→ p2 and p1 9 p2.

The relation 9 is finer than language-inclusion, and thus,
preserves all TSDSL formulas in the sense that if q1 9 q2
and q2 |= ) then q1 |= ) . The question of whether one state
of a TCA simulates another one can be answered with the
help of the region graph construction as in [14].

5. Conclusion

In this paper, we introduced a formal model to reason
about timing constraints for Reo component connectors.
We presented composition operators for join and hiding
that can serve as a basis for the automated construction of
an automata-model from a given (timed) Reo circuit and
as a starting point for its formal verification. In particu-
lar, (slightly modified versions of) well-known algorithms
for checking time-lock freedom in ordinary timed automata
can serve for checking the realizability of the coordina-
tion mechanisms of a Reo circuit with timing constraints.
Moreover, we suggested a linear-time temporal logic for
reasoning about the real-time behavior of component con-
nectors by means of their timed scheduled-data streams and
explained how the standard region- or zone-graphs model
checking algorithms for timed automata can be adapted for
our setting.
Our future work includes an implementation of the pre-
sented model checking algorithms and case studies. More-
over, we intend to study an alternating-time logic in the
style of [2] that allows to reason about the possibility for
certain components to cooperate such that a given (real-
time) property holds.
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