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Abstract

The paper reports on the foundations and experimental results with a model checker for component connectors modelled
by networks of channels in the calculus Reo. The specification formalisms is a branching time logic that allows to reason
about the coordination principles of and the data flow in the network. The underlying model checking algorithm relies
on variants of standard automata-based approaches and model checking for CTL-like logics. The implementation uses a
symbolic representation of the network and the enabled I/O-operations by means of binary decision diagrams. It has been
applied to a couple examples that illustrate the efficiency of our model checker.
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1 Introduction

In the past 15 years, many languages and models for coordination have been developed
that provide a formal description of the glue code for plugging components together and
can also serve as a starting point for formal verification. Inthis paper, we address the latter
aspect for the exogenous coordination language Reo [2]. In Reo, the glue code is provided
by a network of channels obtained through a series of operations that create channel in-
stances and link them together in (network) nodes. The semantics of Reo networks has
been provided in different, but consistent ways. [2] formalizes the enabledness and effect
of I/O-operations at the network configurations by means of accept and offer predicates
that declare whether and which data items can be written or read at a node. An operational
semantics that specifies the stepwise behavior of and possible data flow in a Reo network
has been presented in [6] using a variant of labelled transition systems, called constraint
automata, and shown to be consistent with the timed data stream semantics of [5].

Although Reo is an elegant formalism to synthesize component connectors with simple
composition operators, Reo networks with many channels tend to be hard to understand.
Thus, tool support for analyzing the coordination mechanism specified by a Reo network
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is a crucial aspect for applying the Reo framework for complex scenarios. Algorithms
for verifying Reo networks on the basis of their constraint automata semantics have been
presented in [6] for checking (bi)simulation and language equivalence andin [3,10] for
temporal logic specifications. We follow here the latter approach and deal with a branching
time, time-abstract variant of timed data stream logic (TDSL) introduced in [3] for reason-
ing about real-time constraints of Reo networks in the linear time setting. Ignoring some
minor differences, our logic, called branching time streamlogic (BTSL), is contained in the
logic considered in [10], where the main focus is on the treatment of dynamic reconfig-
uration rather than model checking.BTSLcombines the standard CTL-operators [11,12]
with a special path modality〈α〉 and its dual[α] that allow to reason about the data streams
observable at the network nodes by means of a regular expression α. For instance, assume
C is a component which is linked to a Reo network by an output port RequestwhereC
sends off the request to get access to certain resources and an input portGrant whereC
might receive the grant. Then, theBTSLformula

∃[true∗ ; Request; (¬Grant)∗]∀〈true∗ ; Grant〉 resources_available

states the possibility that each request ofC will eventually be granted and the required
resources will be available forC .

The purpose of this paper is to report on an implementation ofa BTSLmodel checker.
The input is a Reo network and aBTSLformulaΦ which has to be checked for the network.
TheBTSLmodel checking procedure relies on a combination of known methods for model
checking CTL-like logics and automata-based approaches for linear time logics. A rough
sketch for model checking aBTSL-like logic has been given in [10], which follows the
standard CTL∗ model checking approach [14,12] and uses a reduction to the TDSL model
checking problem. However, no details or explanations on anefficient implementation have
been provided in [10]. In fact, forBTSLthe reduction to the model checking problem for the
real-time logic TDSL is unnecessary, since simpler techniques sufficies. As we will show
in this paper, for the treatment of the modalities〈α〉 and [α] even a reduction to ordinary
CTL is possible. Furthermore, we depart from former approaches with constraint automata
by dealing with infinite and finite runs. The latter are crucial for the treatment of deadlock
configurations that might appear in Reo networks.

Our model checker deals with a symbolic approach where the constraint automaton for
a Reo network is represented by a binary decision diagram (BDD). The first step is the
generation of a BDD-representation of the contraint automaton for the network. This is
done in a compositional manner by mimicking Reo’s operatorsto synthesize the network
by adding channels and joining nodes by means of corresponding operators on BDDs. The
second step is then to perform theBTSLmodel checking using appropriate operations for
manipulating BDDs. For this, we apply state-of-the-art techniques for symbolic CTL model
checking in combination with a symbolic treatment of the〈α〉- and[α]-modality.

Organisation of the paper. Section2 gives a brief introduction in the coordination
language Reo and constraint automata that serve as operational model for Reo networks.
In Section3, we explain the syntax and semantics of the logicBTSL. Section4 summarizes
the main steps of theBTSLmodel checking algorithm and reports on our symbolic imple-
mentation. Experimental results will be presented in Section 5. Section6 concludes the
paper.
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2 Reo and constraint automata

In this section we summarize the main concepts of the coordination language Reo and its
operational constraint automata semantics. Further details can be found in [2,6]. Reo is an
exogeneous coordination language which is based on a channel-based calculus where com-
plex component connectors are organized in a network of channels and built in a compo-
sitional manner. Reo networks provide the glue code for the coordination and interactions
of the components that are connected to the network. Reo relies on a very liberal notion
of channels and supports any kind of peer-to-peer communication. The requirement for the
channels used in a Reo network are that channels must have twochannel ends, declared
to be sink or source ends, and a user-defined semantics. At source ends data items enter
the channel (by performing corresponding write operations), while data items are received
from a channel at the sink ends (by performing correspondingread operations).

FIFO1
channel drain

synchronoussynchronous
channel

The figure above shows the graphical representation of threesimple channel types that will
be used in our examples. Synchronous and FIFO channels have asource and a sink end. In
synchronous channels the write and read operations have to be performed simultaneously.
The picture in the middle shows a FIFO channel with one buffercell, briefly called FIFO1
channel, where the buffer is initially empty. Writing a dataitem at the source end is enabled
as long as the buffer is empty. The effect of writingd is thatd will be stored in the buffer.
Reading at the sink end is enabled if the buffer is filled, in which case the data item is taken
off from the buffer. A very useful channel for the design of complex coordination principles
in Reo is the synchronous drain. It has two source ends (but nosink end). A data item has
to be written on both ends simultaneously and both are being destroyed.

The nodes of a Reo network represent sets of channel ends. They arise through Reo’s
join operator and can be classified into source, sink and mixed nodes, depending on whether
all channel ends that coincide on a nodeA are source ends (thenA is a source node), sink
ends (thenA is a sink node), or whetherA combines sink and source ends (thenA is a
mixed node). Source and sink nodes represent input and output ports where components
might connect to the network. The mixed nodes serve as routers where data items can be
transmitted through the network.

Concurrent I/O-operations. For simplicity of the paper, we assume here a fixed finite
and nonempty setData of data items that can be written or taken from the channels. If N
is a set of network nodes then the observable data flow at some moment can be described
by aconcurrent I/O-operation. This means a pair(N,δ) whereN is a nonempty node-set
(i.e., /0 6= N ⊆N ) andδ : N → Data. The intuitive meaning of a concurrent I/O-operation
(N,δ) is that the nodesA ∈ N synchronize their I/O-operations such thatδ(A) is the data
item observed at nodeA. More precisely, each source nodeA ∈ N writes data itemδ(A)

at all channels with a source end onA, while each sink nodeA ∈ N takes data itemδ(A)

from one of the channels with a sink end onA. The mixed nodesA∈ N readδ(A) from one
of the channels with a sink end onA and simultaneously writesδ(A) at all channels with
a source end onA. In the moment where the concurrent I/O-operation(N,δ) is performed
there is no data flow at the other nodesB∈N \N.
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Constraint automata have been introduced to provide a compositional, operational se-
mantics for Reo networks [6]. The states of the automaton for a Reo network represent
the configurations (e.g., contents of the buffers for FIFO channels), while the transitions

model the enabled concurrent I/O-operations. In [6] the transitions have the formq
N,dc−−−→ p

whereq and p are the starting and target states, respectively,N is the set of nodes where
I/O-operations are performed simultaneously anddc is a data constraint, i.e., a boolean con-
dition on the data items written or read at the nodesA∈ N. According to our BDD-based
implementation (see Section4), we go one step further towards a symbolic representation
and deal with transitionsq

g−→ p whereg is an I/O-constraint, i.e., a condition on both, the
nodes where I/O-operations will be performed and the data items. Furthermore we depart
from [6] by dropping the requirement that all runs have to be infinite. We also deal with
finite runs, which are necessary to argue about deadlock configurations.

I/O-constraints. We use a symbolic representation ofsetsof concurrent I/O-operations
by means of boolean conditions on the nodesA∈N and the data itemsdA written or read
at nodeA. Formally, anI/O-constraintfor N is a propositional formula built by the literals
A (whereA ∈ N ) and the atomic formulas “(dA1, . . . ,dAk) ∈ R” where k ≥ 1, A1, . . . ,Ak

are pairwise distinct nodes andR⊆ Datak. Throughout the paper, we will use intuitive
notations like “dA = 0” for “ dA ∈ {0}” or “ dA 6= dB” for “ (dA,dB) ∈ {(δA,δB) ∈ Data2 |
δA 6= δB}”, and write IOC for the set of all I/O-constraints. I/O-constraints are interpreted
over concurrent I/O-operations(N,δ) in the expected way, i.e.,(N,δ) |= A iff A ∈ N and
(N,δ) |= (dA1, . . . ,dAk)∈R iff {A1, . . . ,Ak}⊆N ∧ (δ(A1), . . . ,δ(Ak))∈R. The propositional
logic operators have their standard semantics. We write[| g |]N for the set of concurrent
I/O-operations(N,δ) where /0 6= N ⊆ N and(N,δ) |= g. Note that the semantics of I/O-
constraints depends on the underlying node-setN . For example,[|dA = dB |]N = {(N,δ) |
{A,B} ⊆ N ⊆N ,δ(A) = δ(B)} and[| true|]N = {(N,δ) | /0 6= N ⊆N ,δ : N → Data}. Two
I/O-constraintsg1 andg2 areN -equivalent, denotedg1 ≡N g2, iff [|g1 |]N = [|g2 |]N . If the
node-set is clear from the context we simply write[|g|] and≡ and speak about satisfiability
and equivalence of I/O-constraints.

Definition 2.1 A constraint automaton (CA) is a tupleA = (Q,N ,−→,Q0,AP,L), where
Q is a set of states,N a set of nodes, disjointly partioned intoN = N src⊎N snk⊎N mix,
Q0 ⊆ Q the set of initial states,−→⊆ Q× IOC×Q the transition relation,AP a finite set
of atomic propositions, andL : Q → 2AP a labeling function. The nodes inN src (N snk,
N mix) are called source nodes (sink nodes and mixed nodes, respectively). The instances
of a transition(q,g, p) are tuples(q,N,δ, p) where(N,δ) ∈ [|g|]N . Throughout the paper,
we only consider finite constraint automata, i.e., we require thatN , Q and−→ are finite.

�

In the sequel, we use arrow-notationsq
g−→ p for a transition(q,g, p) and q

N,δ−−−→ p
for its instances. Fig.1 illustrates the constraint automata for a synchronous channel with
source nodeA and sink nodeB, a FIFO1 channel with source nodeA and sink nodeB and
the data domainData= {0,1} and a synchronous drain with source nodesA andB. In all
three cases the node set isN = {A,B}. The I/O-constraint “dA = dB” in the automaton for
the synchronous channel indicates the concurrent I/O-operations({A,B},δ) whereδ(A) =

δ(B), while the I/O-constraintA∧B in the automaton for the synchronous drain represents
all concurrent I/O-operations of the form({A,B},δ). For the FIFO channel one might use
the atomic propositionsemptyandfull with the obvious labeling function.
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dA = dB

synchronous
channel drain

synchronousFIFO1
channel

q/0

q(0)
dA = 0∧¬B

dB = 0∧¬A

q(1)

dA = 1∧¬B

dB = 1∧¬A

qq

A∧B

Fig. 1. CA for a synchronous channel, FIFO1 channel and synchronous drain

For stateq, the I/O-constraintsioc(q, p) =
W{g | q

g−→ p} represents the weakest condi-
tion on the I/O-operations at the nodes that have to be synchronized for moving within one
step fromq to p. Thus, ifP⊆Q thenioc(q,P) =

W

p∈P ioc(q, p) stands for the set of all con-
current I/O-operations that are enabled inq and lead to a configuration inP. With P = Q,
we get a boolean characterizationioc(q) = ioc(q,Q) for the set of all enabled concurrent
I/O-operations inq.

Stateq is calledterminal if ioc(q)∧V

A∈N s¬A ≡ falsewhereN s =N src∪N snk. This
condition means that in all enabled concurrent I/O-operations inq at least one of the sink
or source nodes is involved. These I/O-operations might be refused if the components that
connect to these nodes are not willing to provide the corresponding write or read operations.
Thus, data flow might stop in terminal states.

The intuitive operational behavior of a constraint automaton can be formalized by its
runs. Runs in a constraint automaton are defined as finite or infinite sequences of consec-
utive transition instances. In the case of finite runs, we allow that they end with a special
pseudo-transition with the label

√
, denoting the end of data flow, provided that the last

state is terminal. I.e., finite runs have the form

(1) q0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ qk or (2) q0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ qk

√
−→ qk

whereqi−1
Ni ,δi−−−→ qi are transition instances (i = 1, . . . ,k) andqk is terminal for finite runs

ending with a
√

-transition (case (2)). The length|θ| ∈ IN∪{ω} is defined as the number of
transition instances taken inθ (possibly including the pseudo-transition with label

√
). A

maximal run means an infinite run or a finite run that ends with apseudo-transition labelled
by

√
. We writeRuns(q) for the set of all runs starting inq andMaxRuns(q) for all maximal

runs starting inq.

If θ = q0
N1,δ1−−−−→ q1

N2,δ2−−−−→ q2
N3,δ3−−−−→ . . . is an infinite or finite, but non-maximal run

then the word(N1,δ1)(N2,δ2)(N3,δ3) . . . obtained by taking the projection to the sequence
of concurrent I/O-operations is called the I/O-stream ofθ. For finite maximal runs, say

θ = q0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ qk

√
−→ qk, the I/O-stream ofθ is the word(N1,δk) . . . (Nk,δk)

√
.

3 Branching Time Stream Logic

In this section we introduce a branching time temporal logicfor reasoning about the con-
trol and data flow of a constraint automata. The logic, calledBranching Time Stream
Logic (BTSL), combines features of CTL [11,12], PDL [15] and timed data stream logic
(TDSL) [3,9,4]. As in CTL, formulas may refer to the configurations of a component con-
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nector (states of a constraint automata) by means of atomic propositionsap∈ AP and may
use the path quantifiers∃ and∀. Path properties are specified by the standard until operator
or the PDL/TSDL-like modality〈α〉 whereα is a regular expression specifying sequences
of I/O-operations at the nodes.

Branching Time Stream Logic (BTSL). A BTSLsignature is a tuple(AP,N ) consist-
ing of a finite nonempty setAP of atomic propositions and a finite nonempty node-setN .
The syntax ofBTSLhas three levels: state formulas (denoted by capitol greek lettersΦ,
Ψ), run formulas (denoted by the small greek letterϕ), and regular I/O-stream expressions
(denoted by the letterα). The abstract syntax ofBTSLis given by the following grammar
whereap∈ APandg∈ IOC:

Φ := true
∣

∣ ap
∣

∣ Φ1∧Φ2
∣

∣ ¬Φ
∣

∣ ∃ϕ
∣

∣ ∀ϕ
ϕ := Φ1 U Φ2

∣

∣ 〈α〉Φ
α := g

∣

∣ stop
∣

∣ α∗ ∣

∣ ¬α
∣

∣ α1 ; α2
∣

∣ α1∪α2
∣

∣ α1∩α2

The intuitive meaning of the state formulas and the until operator U is as in CTL. In
the PDL-like formula〈α〉Φ, the regular I/O-stream expressionα specifies a set of finite
I/O streams, i.e., finite sequences of concurrent I/O-operations, possibly ending with the
symbol

√
. Intuitively, 〈α〉Φ holds for a maximal run if it starts with a finite prefix where

the data flow matches the conditions specified byα.
Other operators can be derived, e.g.,3Φ = trueU Φ (eventually),∀2Φ =¬∃3¬Φ and

∃2Φ = ¬∀3¬Φ (always). The dual to the PDL-like modality〈·〉 is obtained by∃[α]Φ =

¬∀〈α〉¬Φ and∀[α]Φ = ¬∃〈α〉¬Φ. Intuitively, [α]Φ holds for a maximal run if all its finite
prefixesθ, where the induced I/O-stream belongs to the language givenby α, end in a
state whereΦ holds. The next step operator© of LTL/CTL-like logics arises as a special
instance of〈·〉 by©Φ = 〈true〉Φ.

The semantics of a regular data expressionα is provided by means of a language
LN (α) ⊆ 2IOS where IOS denotes the set of all finite I/O-streams, i.e., finite sequences
of concurrent I/O-operations, possibly ending with the special symbol

√
denoting that

there is no further data flow. We defineLN (g) to be the set of all concurrent I/O-operations
(N,δ), viewed as words (I/O-streams) of length 1, such that(N,δ) ∈ [|g|]N . The language
LN (stop) is the singleton set{√}. The operators∪, ∩ and¬ in the grammar for regular
I/O-stream expressions have the standard meaning, i.e.,∩ stands for intersection,∪ for
union, and¬ for complementation. (Complementation and intersection could be dropped
in the syntax of regular I/O-streams expressions without decreasing the expressivity of the
logic. We included them in our syntax since there are no closed regular expressions for
¬α or α1 ∩α2.) The meaning of ; and∗ agrees with standard concatenation and Kleene
closure, except for a special treatment of

√
. If L1,L2 ⊆ 2IOS thenL1 ; L2 arises by the

pointwise concatenationσ1 ; σ2 of the elements inσ1 ∈L1 and the elementsσ2 ∈L2 where
σ1 ; σ2 = σ1 if σ1 ends with

√
. The Kleene closure is then defined in the standard way by

L
∗ =

S

L
n whereL

0 = {ε} (the language consisting of the empty I/O-stream),L
1 = L and

L
n+1 = L ; L

n.
BTSLformulas over the signature(AP,N ) are interpreted over a constraint automaton

with the node-setN and the setAPof atomic propositions. ForA = (Q,N ,−→,Q0,AP,L),
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the satisfaction relation|=A for BTSLstate formulas is defined in the standard way:

q |=A true

q |=A ap ⇐⇒ ap∈ L(q)

q |=A ¬Φ ⇐⇒ q 6|=A Φ

q |=A Φ1∧Φ2 ⇐⇒ q |=A Φ1 andq |=A Φ2

q |=A ∃ϕ ⇐⇒ there exists a runθ ∈ MaxRuns(q) s.t. θ |=A ϕ

q |=A ∀ϕ ⇐⇒ for all runsθ ∈ MaxRuns(q): θ |=A ϕ

The meaning of the path formulas is as follows. Ifθ is a maximal run thenθ |=A 〈α〉Φ
iff there exists a finite prefixθ′ of θ such thatp |=A Φ for the last statep of θ′ and the
I/O-stream ofθ′ belongs toLN (α). The semantics of the until operator is as in CTL. Ifθ is
a maximal run inA then the satisfaction relationθ |=A (·) for BTSLrun formulas is defined
as follows.

If θ = q0
N1,δ1−−−−→ q1

N2,δ2−−−−→ q2
N3,δ3−−−−→ . . . is infinite then

θ |=A 〈α〉Φ ⇐⇒ ∃ j ≥ 0 s.t.q j |=A Φ and (N1,δ1) . . . (Nj ,δ j) ∈ LN (α)

If θ = q0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ qk

√
−→ qk is finite then

θ |=A 〈α〉Φ ⇐⇒ either∃0≤ j ≤ k s.t. q j |=A Φ and (N1,δ1) . . . (Nj ,δ j) ∈ LN (α)

or qk |=A Φ and(N1,δ1) . . . (Nk,δk)
√∈ LN (α)

For θ to be an infinite or finite maximal run with the state sequenceq0 q1 q2 . . .:

θ |=A Φ1 U Φ2 ⇐⇒ ∃0≤ j < |θ| s.t. q j |=A Φ2 ∧ ∀0≤ i < j. qi |=A Φ2

�

Let SatA(Φ) = {q ∈ Q | q |=A Φ}. If A is clear from the context then we skip the
subscriptA and simply write|= andSat(·). AutomatonA fulfills Φ, denotedA |= Φ, if
q0 |=A Φ for all initial statesq0 ∈ Q0.

Example 3.1 For a synchronous channel with source nodeA and sink nodeB the BTSL
formula∀2∀〈stop∪ (dA = dB)〉trueholds, asserting that all runs in the automaton consist
of concurrent I/O-operations where data items are transmitted synchronously fromA to B,
and possibly end if the components connected toA or B do not provide the corresponding
write or read operation. For the FIFO1 channel with source node A and sink nodeB, the
formulas∀[true∗ ; A]full and∀[true∗ ; B]emptyhold, stating that afterA’s write operation
the buffer is full, while afterB’s read operation the buffer is empty. Also the formula
∀2¬∃〈A∧B〉true holds for the FIFO1 channel stating the impossibility of simultaneous
data flow atA andB.

For (the constraint automata of) the network on the left of Fig. 2, theBTSLformulas
∀2¬∃〈A∧B〉true, ∀[true∗ ; A]∀〈B〉true, ∀[true∗ ; B]∀〈A〉true and∀〈true∗〉∀〈dA = d∪ dB =
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d〉truehold. (Thed in the picture denotes that the upper buffer is filled with thedata item
d in the initial configuration.) The former three formulas state that data flow atA andB
alternates, while the latter formula asserts that only dataitem d, observed atA or B, is
possible.

C
B

AA

B

d d

Fig. 2. Two Reo networks

While the network on the left has no terminal states, and thus, data flow is al-
ways infinite, the source nodeC in the network on the right may write into the upper
buffer which yields the configuration where both buffers arefilled and data flow stops.
Hence, the network on the right fulfills the formulas∀[true∗ ; A]∀〈(B; A)∪ (C; stop)〉true,
∀[true∗ ; B]∀〈A〉trueand∀[true∗ ; C]both_buffers_full, whereboth _buffers_fullis an atomic
proposition with the obvious semantics.

A3 B

d

A2
A1
A0

Fig. 3. A sequencer

Fig. 3 shows the network for a sequencer, built out of 4 FIFO1 channels and sev-
eral synchronous channels and drains that allows theAi ’s to send messages toB in
the orderA0A1A2A3A0A1A2A3 . . .. This property can be formalized by the formulas
¬∃〈(true∗ ; Ai ;A j)〉true where 0≤ i < j and j 6= i + 1 (modulo 3). Other properties
that hold for the sequencer are∀[true∗ ; (¬stop∩ ¬B)]false, ∀[true∗ ; Ai]filled(i+1) and
∀2

(

filled(i+1) → ∃〈dAi = dB〉true
)

wherefilled(i+1) is an atomic proposition stating that
the(i +1)-st buffer is filled (modulo 3).

The terminal states of a constraint automaton are characterized by the formula
Φterminal = ∃〈stop〉true. �

4 SymbolicBTSLModel Checking

The BTSLmodel checking problem takes as input a Reo network, possibly together with
constraint automata that specify the interfaces of the components that are connected to the
source and sink nodes of the network, and aBTSLformula which has to be checked for the
network. The automata for the components that are connectedto the sink or source nodes
of the network describe the environment in which the networkoperates. They may restrict
the nondeterminism in the automaton for the network, since certain transition instances
(concurrent I/O-operations) might become impossible due to the behavioral interfaces of
the components. After connecting a sink and source nodeA of the network with a port of a
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component,A is treated as a mixed node. Thus, the automata for the component might also
decrease the set of terminal states. In case nothing is knownabout the potential behaviors of
the components that will be coordinated by the network, these automata can be skipped, in
which case all possible interactions of the sink and source nodes will be taken into account
for the analysis.

BDD representation
for the composite CA

BTSL model

checking
answer ”yes”/”no”

+witness/ counter-example

BTSL Formula

Reo

CA for

interfaces
component

Fig. 4. Model Checking schema

The schema of our model checker is depicted in Fig.4. The first step is to generate an
appropriate representation of the constraint automaton associated with the network, pos-
sibly within the environment given by the automata for the components. The goal of the
second step is to verify or falsify whether for the generatedconstraint automata a given
BTSLformula holds in all initial states. For certain formula types the model checker can
return a witness (e.g., a runθ with θ |= ϕ if the formula to be checked is∃ϕ) or a coun-
terexample (e.g., a runθ with θ 6|= ϕ if the formula to be checked is∀ϕ).

In the remainder of this section, we report on a symbolicBTSLmodel checker. We
first summarize the main steps of theBTSLmodel checking algorithm and then explain its
symbolic realization.

The model checking algorithm. BTSLmodel checking relies on a combination of
the CTL model checking algorithm [11] with automata-based approaches. Given a con-
straint automataA andBTSLstate formulaΦ, the idea is an iterative computation of the
satisfaction setsSatA (Ψ) for the sub-state-formulasΨ of Φ.

The treatment of the propositional logic fragment is obvious. The satisfaction sets for
formulas∃(Φ1 U Φ2) or ∀(Φ1 U Φ2) are obtained as in CTL, only slight modifications
are necessary for a correct treatment of terminal states. For formulas of the form∃〈α〉Ψ or
∃[α]Ψ, 2 we first apply standard algorithms to generate a nondeterministic finite automata
(NFA) Z for the regular I/O-stream expressionα. The alphabet ofZ, i.e., the range of the
transition labels inA , is IOC∪{√}. In fact, beside the special

√
-transitions,Z can be

viewed as a constraint automataZ = (Z,N ,−→,Z0,ZF) with an additional setZF of final
(accept) states. The atomic propositions and labeling function are irrelevant forZ. By the
special role of the end symbol

√
, we may assume thatZ’s state spaceZ contains a subset

Z√ such that (i)z
√
−→ z′ impliesz′ ∈ Z√, (ii) z

g−→ z′ ∈ Z√ impliesg =
√

, (iii) the states in
Z√ do not have successors.

GivenA andZ, we then built the productA ×Z where the states are pairs(q,z) con-
sisting of a stateq in A and a statez in Z. The transitions inA ×Z are obtained by the

2 We explain here an algorithm for∃[α]Ψ. The treatment of formulas∀〈α〉Ψ is obtained by the duality law∀〈α〉Ψ ≡
¬∃[α]¬Ψ.

9
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following rules:

q
g1−→A q′ ∧ z

g2−→Z z′ ∧ g1,g2 ∈ IOC

(q,z)
g1∧g2−−−−−→A×Z (q′,z′)

q is terminal inA ∧ z
√
−→Z z′

(q,z)
√
−→A×Z (q,z′)

where we use the subscriptsA , Z orA×Z for the transition relations inA , Z andA×Z,
respectively. The productA×Z is equipped with two atomic propositionssat(Ψ) andfinal
and the labeling function that assignssat(Ψ) to all states(q,z) whereq |=A Ψ andfinal
to all states(q,z) wherez∈ ZF . The following proposition (see appendix for the proof)
provides a reduction to CTL.

Proposition 4.1 (Reduction to CTL)

(a) q |=A ∃〈α〉Ψ iff there exists z0 ∈ Z0 with (q,z0) |=A×Z ∃3(sat(Ψ)∧final)

(b) If A is deterministic then q|=A ∃[α]Ψ iff (q,z0) |=A×Z ∃2(sat(Ψ)∨¬final) where z0
is the initial state ofZ.

Part (a) of Prop.4.1allows to computeSat(∃〈α〉Ψ) by means of a backward reachability
analysis inA×Z. ForSat(∃[α]Ψ), the second part of Prop.4.1suggests to switch fromZ
to an equivalent deterministic finite automata (DFA) and to search for cycles in a subgraph
of the product ofA and the DFA. However, the determinization ofZ (which can cause an
exponential blow-up) can be avoided by applying Algorithm1.

Algorithm 1 Computation ofSat(∃[α]Ψ)

construct an NFAZ for α and built the productA×Z;
V := {(q,z) ∈ Q×Z | q∈ Sat(Ψ)∨z /∈ ZF};
repeat

V ′ := V;

R := {(q,z) | ∀ transition instancesq
N,δ−−−→A q′ ∃z

N,δ−−−→Z z′ s.t. (q′,z′) /∈V};
V := (V \R) ∪ {(q,z) ∈V | q terminal∧ z∈ Z√}

until (V ′ = V);
return{q∈ Q | (q,z0) ∈V for all z0 ∈ Z0}

Proposition 4.2 Algorithm1 computes the set of states q∈ Q where q|=A ∃[α]Ψ.

Proof. Let V be the set of states(q,z) that belong toV when the repeat-loop terminates.
Furthermore, letV0 = {(q,z) | q∈ Sat(Ψ)∨z /∈ ZF}, W0 = Q×Z\V0 and letWi be the set
of states that are removed fromV in the i-th iteration. Then,

V =
T

i≥0Vi = Vn

whereVi+1 = Vi \Wi+1 andn is the number of iterations. Moreover, we have:

(i) for all (q,z) ∈V whereq is non-terminal there exists a transition instanceq
N,δ−−−→ q′

such that(q′,z′) ∈V for all z
N,δ−−−→ z′.

(ii) for all (q,z) ∈ Wi and for all runsq = q0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ qm of length m≥ i in

A there exists a runz = z0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ zk of length k ≤ min{i,m} such that
(qk,zk) /∈V0, i.e.,qk 6|=A Ψ andzk ∈ ZF .

10
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Let us now assume thatq0 is a state contained in the set returned by Algorithm1. Then,
(q0,z0) ∈V for all initial statesz0 in Z. We successively apply (i) to obtain a maximal run
in A

θ = q0
N1,δ1−−−−→ q1

N2,δ2−−−−→ . . .

such that for all runs

z0
N1,δ1−−−−→ z1

N2,δ2−−−−→ . . .

in Z for the same I/O-stream, we have(qi ,zi) ∈V for all indicesi. SinceV ⊆V0 we obtain
θ |=A [α]Ψ, and thus,q0 |=A ∃[α]Ψ.

We now consider a stateq0 ∈ Q such thatq0 |=A ∃[α]Ψ. Let

θ = q0
N1,δ1−−−−→ q1

N2,δ2−−−−→ . . .

be a maximal run inA such thatθ |=A [α]Ψ. W.l.o.g. θ has minimal length under all
runsθ′ ∈MaxRuns(q0) whereθ′ |=A ∃[α]Ψ. If we assume that(q0,z0) /∈V for somez0 ∈Z0,
say(q0,z0) ∈Wi , then|θ| ≥ i and by (ii) there existsk≤ i and a run

z0
N1,δ1−−−−→ . . .

Nk,δk−−−−→ zk

in Z such that(qk,zk) /∈V0. Hence,zk ∈ ZF andqk 6|=A Ψ. But then(N1,δ1) . . . (Nk,δk) ∈
LN (α) andθ 6|=A [α]Ψ. Contradiction. This yields(q0,z0) ∈V for all z0 ∈ Z0. Hence,q0

is in the set of states returned by Algorithm1. 2

The complexity of the algorithms to compute the satisfaction sets of∃〈α〉Ψ and∀[α]Ψ
are polynomial in the size ofA andZ. Thus, the overall time complexity ofBTSLmodel
checking is polynomial in the size ofA and the length of the input formulaΦ, provided the
regular I/O-stream expressions inΦ are ordinary regular expressions, i.e., do not use the
complementation or intersection operator, since they can cause an exponential blow-up in
the construction ofZ from α.

Symbolic implementation. We now summarize the main features of our symbolic
BTSLmodel checker with binary decision diagrams (BDDs), see e.g. [8,17,16,19]. BDDs
are a data structure for switching functionsf : Eval(x1, . . . ,xn) → {0,1} wherex1, . . . ,xn

are boolean variables andEval(x1, . . . ,xn) denotes the set of evaluations forx1, . . . ,xn. To
represent a constraint automatonA = (Q,N ,−→,Q0,AP,L) by a BDD, we fix a binary
encoding of the states, i.e., we embedQ into {0,1}n by an injective functionbin : Q →
{0,1}n wheren = ⌈log|Q|⌉, choose boolean state variablesq1, . . . ,qn and then identify
each stateq with the evaluation forq1, . . . ,qn given bybin(q). In the same way, we may
encode the data items by bit tuples. For simplicity, we assume here the boolean data domain
Data= {0,1} and treat the symbolsdA and the nodesA∈N as boolean variables.

In the sequel, letN = {A1, . . . ,Ak} and di = dAi , i = 1, . . . ,k. We write Ā and d̄
for the variable tuples(A1, . . . ,Ak) and (d1, . . . ,dk), respectively. The transition relation
−→ can be identified with its characteristic function and viewed as a switching function
TA : Eval(q̄, Ā, d̄, q̄′) → {0,1}, where the variable tuplēq = (q1, . . . ,qn) encodes the start-
ing state,q̄′ = (q′1, . . . ,q

′
n) the target state, whilēA andd̄ serve to represent the concurrent

I/O-operations. For instance, the transition relations ofthe constraint automata for a syn-
chronous channel with source nodeA and sink nodeB and a synchronous drain are given

11
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by:

Tsync_channel(q1,A,B,dA,dB,q′1) = q1∧A∧B∧ (dA ↔ dB)∧q′1

Tsync_drain(q1,A,B, dA, dB, q′1) = q1∧A∧B∧q′1

For a FIFO1 channel we have to encode three states, saybin(q) = 00, bin(q(1)) = 11 and
bin(q(0)) = 10, and then may represent the automaton by

(¬q1∧¬q2∧A∧¬B∧ (q′2 ↔ dA)∧q′1) ∨ (q1∧¬A∧B∧ (q2 ↔ dB)∧¬q′1∧¬q′2)

The BDD-representation for the transition relation of a Reonetwork can be constructed in
a compositional manner, by mimicking Reo’s composition operators with corresponding
operators on constraint automata and applying the analogous symbolic operations for ma-
nipulating switching functions. We will briefly consider the join operator which allows to
collapse two nodes into a single node. Using some appropriate renaming of nodes, Reo’s
join operator can be reduced on the automata level to a product construction that “synchro-
nizes” the data flow at the common nodes of the given constraint automata (see [6]). If A1

andA2 are constraint automata with node setsN1 andN2, respectively, then the concurrent
I/O-operations in the productA1×A2 are given by the transition instances obtained by the
following synchronization rule and two interleaving rules:

q1
g1−→A1 p1, q2

g2−→A2 p2

(q1,q2)
g1∧g2−−−−−→A1×A2 (p1, p2)

q1
g1−→A1 p1

(q1,q2)
g1∧¬N2−−−−−−→A1×A2 (p1,q2)

q2
g2−→A2 p2

(q1,q2)
g2∧¬N1−−−−−−→A1×A2 (q1, p2)

where¬Ni stands short for
V

A∈Ni
¬A.

These rules can be realized in a symbolic way by puttingTA1×A2 =

(TA1 ∧ TA2) ∨ (TA1 ∧ ¬N2 ∧ idA2) ∨ (TA2 ∧ ¬N1 ∧ idA1), whereidA =
V

q∈Q(q ↔
q′) andQ is in the state space ofA .

Beside the transition relation, we also need a BDD-represent of the labeling function.
This can be done by representing the characteristic function of Sat(ap) = {q ∈ Q | ap∈
L(q)} by a BDD for the induced functionfap : Eval(q̄) → {0,1}. BDD-representationsfΨ
for the satisfaction setsSat(Ψ) of the subformulasΨ of Φ are obtained by reformulating the
BTSLmodel checking algorithm in a symbolic way with boolean operators and applying
the corresponding BDD synthesis algorithms. A symbolic reformulation of Algorithm1
is shown in Algorithm2 where it is assumed that the BDDfΨ for Sat(Ψ) and a BDD-
representationTerminalfor the set of terminal states has already been constructed.We use
the variable tuplēq = (q1, . . . ,qn) to encode the states inA and z̄ = (z1, . . . ,zm) for the
states inZ. SubsetsV of Q×Z are encoded by the variables in̄q and z̄. The notation
V(q̄′, z̄′) means that the variables ofV are renamed into their primed copies. The setsZ0,
ZF andZ√ are represented by BDDs with the variablesz̄.

5 Examples and results

We applied theBTSLmodel checker to a couple of examples. We will report here on
two case studies. All results were achieved on a Pentium IV, 1.8GHz, 1.5GB RAM with

12
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Algorithm 2 Computation of the symbolic representationf∃[α]Ψ for Sat(∃[α]Ψ)

construct an NFAZ for A and generate BDD-representationsTZ for the transition rela-
tion ofZ and for the setsZ0, ZF andZ√;
V := fΨ ∨¬ZF;
repeat

V ′ := V;
R := ∀q̄′∀Ā∀d̄.

(

TA ⇒ ∃z̄′.(TZ ∧V(q̄′, z̄′))
)

;
V := (V ∧¬R) ∨ (V ∧Terminal∧Z√)

until (V ′ = V);
return∀z̄.(Z0 ⇒V) (* symbolic representationf∃[α]Ψ for Sat(∃[α]Ψ) *)

Mandriva Linux and kernel 2.6.12. The tool was written in C++, compiled with GCC4.0.3
and uses JINC [18] as library for binary decision diagrams.

Example 5.1 [Dining philosophers]The first example describes the well-known dining
philosophers scenario, modelled in Reo as in [1], see Fig.5.

take lefti

return lefti

take righti

return righti

PHILOSOPHERPi

take(i+1)mod ntakei

returni return(i+1)mod n

. . .

. . .

. . .

. . .

Fig. 5. Dining philosophers scenario

The interface of philosopheri has four output portstake_lefti , take_righti, return_lefti
and return_righti that serve to take and return the chopsticks on the left and right of the
philosopher. The chopsticks are modelled by a FIFO1 channeland synchronous drain. The
constraint automata for the interfaces of the philosophersand the chopsticks are shown in
Fig. 6.

waiti

thinkingi
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(¬take lefti ∧ take righti∧
¬return lefti ∧¬return righti)
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Fig. 6. CA for philosopher and chopstick
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Table 1 illustrates the efficiency of the symbolic approach to construct the BDD-
representation of the constraint automatonA for the whole system by the symbolic join-
operation. The first column “size” shows the number of philosophers. The second column
“time” shows the time needed for the synthesis phase, while the last column “reachable
time” refers to the time needed to compute the reachable fragment ofA . The other two
columns refer to the size of the generated BDD forA and the maximal size of the BDDs
generated during the symbolic computation.

Size Time BDD Nodes Peak Reach Time

200 0.98s 33146 285523 0.24s

400 2.18s 66546 572523 0.45s

800 4.97s 133346 1146523 0.86s

1600 12.69s 266946 2294523 1.81s

3200 35.12s 534146 4590523 3.96s

6400 112.21s 1068546 9182523 8.53s

Table 1
Synthesis results for the dining philosophers

To give an impression of the size of the state space: the reachable part of the CA for
800 philosophers consists of about 10306 states. Several properties have been checked for
this model of the dining philosophers. Table2 shows the results for threeBTSLformulas.
The columns refer to the number of philosophers, number of steps in the model checking
procedure namely the number of iteration within the fixpointcomputation and the total
amount of time needed to verify (or falsify) the given formula.

Size Formula Steps Time Peak

200 ∀2(¬(eat100∧eat101)) 199 17.78s 5169232

200 ∀2[∃〈true∗; take_righti〉true] 798 135.04s 34762951

3200 ∃〈true∗; takei ; take(i+1)mod n〉eati 5 16.56s 9303687

Table 2
Model Checking results for the dining philosophers

The second formula does not hold since there is the run where all philosophers take
their left chopstick and then wait forever for the missing right chopstick. This deadlock
situation has been found with 798 iterations by means of a backward analysis. Computing
the reachable part first by means of a forward analysis, the deadlock can be found in 403
steps within 13.92s only.

Example 5.2 [Mutual exclusion]The second example is the component connector shown
in Fig. 7 that realizes a mutual exclusion protocol forn parallel processes (P1, . . . ,Pn) where
at each time instance at mostk may perform their critical actions.

We assume here that the behavioural interface of each componentPi is represented by
the constraint automaton also depicted in Fig.7.
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P1 P2 Pn

. . .
request releaseA1 A2 Ak

requesti ∧¬enteri ∧¬releasei

waiti

noncriti

criti

¬requesti ∧enteri ∧¬releasei
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Fig. 7. Mutual exclusion scenario and CA for one process

Table3 summarizes the results for the generation of the BDD-representation, wheren
is the number of processes andk the maximum number of processes allowed to be in their
critical section at the same time. For 200 processes andk = 60 this CA consists of more
than 5·10119 reachable configurations.

n k Time BDD Nodes Peak Reach Time

200 5 4.34s 9617 1735363 0.15s

200 20 5.74s 11907 2295538 0.89s

200 60 9.38s 17986 3789338 9.64s

400 5 17.17s 18617 5933461 0.29s

400 20 20.14s 20907 7045636 1.64s

400 60 28.64s 26986 10011436 11.77s

800 5 62.99s 36617 20508457 0.58s

800 20 69.26s 38907 22724632 3.07s

800 60 85.99s 44986 28634432 20.58s

Table 3
Synthesis results for the mutual exclusion network

We performed the analysis with severalBTSLformulas. Table4 shows the results for
three formulas:Φ1 = ∀[request∗] (

V

1≤i≤n¬criti),
Φ2 = ∃〈true∗;enter1;A1;(enter2∧A2);A1;(enter3∧A3)〉(crit1∧crit2∧crit3) and
Φ3 = ∀[true∗;enter1;(¬release)∗; . . . ;enterk;(¬release)∗)]¬∃〈(¬release)∗;enterk+1〉true.

6 Conclusion

The purpose of the paper was to explain the functionality andfoundations of our model
checker for Reo networks. The efficiency has been illustrated by two examples that show
that our model checking approach can handle even very large networks with up to 101200

configurations in a reasonable amount of time. Given the widerange of applications of the
Reo framework, see e.g. [13,20,9], we believe that our model checker yields an important
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Processes (n) Semaphors (k) Time (Φ1) Time (Φ2) Time (Φ3)

200 5 0.80s 0.15s 0.68s

200 20 0.86s 0.19s 0.82s

200 60 0.82s 0.38s 1.89s

400 5 1.74s 0.31s 1.47s

400 20 1.82s 0.35s 1.58s

400 60 1.43s 0.53s 2.53s

800 5 4.57s 0.62s 3.69s

800 20 4.58s 0.65s 3.63s

800 60 3.62s 0.87s 4.61s

Table 4
Model Checking results for the mutual exclusion

contribution for formal reasoning about exogeneous coordination models. Beside further
optimizations to increase efficiency and case studies, we will extend our implementation
to reason about real-time constraints with the logic TDSL [3] or a branching time version
thereof and about dynamic reconfigurations by means of the logic considered in [10] or
other formal frameworks for Reo’s dynamic operations.
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