FOCLASA 2006

Symbolic Model Checking for Channel-based
Component Connectors

Sascha Kluppelholz, Christel Baier

Universitat Bonn, Institut fir Informatik |, Germany
{klueppel,baief@cs.uni-bonn.de

Abstract

The paper reports on the foundations and experimentaltsesith a model checker for component connectors modelled
bg networks of channels in the calculus Reo. The specificdtiomalisms is a branching time logic that allows to reason
about the coordination principles of and the data flow in teevmork. The underlying model checking algorithm relies
on variants of standard automata-based approaches and amed&ing for CTL-like logics. The implementation uses a
symbolic representation of the network and the enabledolg@rations by means of binary decision diagrams. It has been
applied to a couple examples that illustrate the efficierfayuo model checker.

Keywords: constraint automata, model checking, branching time |atata streams, binary decision diagrams

1 Introduction

In the past 15 years, many languages and models for codahinbive been developed
that provide a formal description of the glue code for pluggcomponents together and
can also serve as a starting point for formal verificationthie paper, we address the latter
aspect for the exogenous coordination language Redr] Reo, the glue code is provided
by a network of channels obtained through a series of opastihat create channel in-
stances and link them together in (network) nodes. The stesanf Reo networks has
been provided in different, but consistent wayg] fprmalizes the enabledness and effect
of 1/O-operations at the network configurations by meanscofpt and offer predicates
that declare whether and which data items can be writtenaat a& a node. An operational
semantics that specifies the stepwise behavior of and peskla flow in a Reo network
has been presented ifl][using a variant of labelled transition systems, calledsti@int
automata, and shown to be consistent with the timed datanstsemantics of].

Although Reo is an elegant formalism to synthesize compioc@mectors with simple
composition operators, Reo networks with many channeld terbe hard to understand.
Thus, tool support for analyzing the coordination mechanspecified by a Reo network

1 The authors are supported by the DFG-NWO-projects SYANCOADSS 1.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

KLUEPPELHOLZ, BAIER

is a crucial aspect for applying the Reo framework for compeenarios. Algorithms
for verifying Reo networks on the basis of their constraintoanata semantics have been
presented ing] for checking (bi)simulation and language equivalence enfB,10] for
temporal logic specifications. We follow here the lattermgech and deal with a branching
time, time-abstract variant of timed data stream logic (LDi&troduced in B] for reason-
ing about real-time constraints of Reo networks in the linéae setting. Ignoring some
minor differences, our logic, called branching time strdagic (BTSL), is contained in the
logic considered inJ0], where the main focus is on the treatment of dynamic recenfig
uration rather than model checkin@TSLcombines the standard CTL-operatoid,[12]
with a special path modalitya) and its duala] that allow to reason about the data streams
observable at the network nodes by means of a regular expnessFor instance, assume
C is a component which is linked to a Reo network by an output Bequesivhere C
sends off the request to get access to certain resourcesnanguwd portGrant where C
might receive the grant. Then, tBI SLformula

J[tru€’; Request(—Grant)*] V(true"; Grant) resources_available

states the possibility that each requestcoivill eventually be granted and the required
resources will be available faf.

The purpose of this paper is to report on an implementaticmBfSLmodel checker.
The input is a Reo network and3¥ SLformula® which has to be checked for the network.
TheBTSLmodel checking procedure relies on a combination of knowthous for model
checking CTL-like logics and automata-based approachelnfmar time logics. A rough
sketch for model checking BTSL:like logic has been given inlp], which follows the
standard CTLE model checking approacii4,12] and uses a reduction to the TDSL model
checking problem. However, no details or explanations ogfacient implementation have
been provided in10Q]. In fact, for BTSLthe reduction to the model checking problem for the
real-time logic TDSL is unnecessary, since simpler teamesgsufficies. As we will show
in this paper, for the treatment of the modaliti®s and[a] even a reduction to ordinary
CTL is possible. Furthermore, we depart from former apphesaovith constraint automata
by dealing with infinite and finite runs. The latter are crliéia the treatment of deadlock
configurations that might appear in Reo networks.

Our model checker deals with a symbolic approach where thstaint automaton for
a Reo network is represented by a binary decision diagranD(BDhe first step is the
generation of a BDD-representation of the contraint automdor the network. This is
done in a compositional manner by mimicking Reo’s operatorsynthesize the network
by adding channels and joining nodes by means of correspgrogierators on BDDs. The
second step is then to perform tB& SLmodel checking using appropriate operations for
manipulating BDDs. For this, we apply state-of-the-arhtdques for symbolic CTL model
checking in combination with a symbolic treatment of the- and[a]-modality.

Organisation of the paper. Section2 gives a brief introduction in the coordination
language Reo and constraint automata that serve as opatatimdel for Reo networks.
In Section3, we explain the syntax and semantics of the I&®jIcSL Sectionrd summarizes
the main steps of thBTSLmodel checking algorithm and reports on our symbolic imple-
mentation. Experimental results will be presented in $adii Section6 concludes the
paper.

KLUEPPELHOLZ, BAIER

2 Reo and constraint automata

In this section we summarize the main concepts of the coatidim language Reo and its
operational constraint automata semantics. Furtherldetain be found ing,6]. Reo is an
exogeneous coordination language which is based on a dHaased calculus where com-
plex component connectors are organized in a network ofrelarand built in a compo-
sitional manner. Reo networks provide the glue code for dwdination and interactions
of the components that are connected to the network. Ressreh a very liberal notion
of channels and supports any kind of peer-to-peer commtiacal he requirement for the
channels used in a Reo network are that channels must havehammel ends, declared
to be sink or source ends, and a user-defined semantics. Atesends data items enter
the channel (by performing corresponding write operalionile data items are received
from a channel at the sink ends (by performing corresponoiag operations).

——o o—{ |—eo o—r—<—o
synchronous FIFO1 synchronous
channel channel drain

The figure above shows the graphical representation of #inggle channel types that will
be used in our examples. Synchronous and FIFO channels lsaweae and a sink end. In
synchronous channels the write and read operations hawe perdformed simultaneously.
The picture in the middle shows a FIFO channel with one budédr, briefly called FIFO1
channel, where the buffer is initially empty. Writing a détamn at the source end is enabled
as long as the buffer is empty. The effect of writidgs thatd will be stored in the buffer.
Reading at the sink end is enabled if the buffer is filled, inclittase the data item is taken
off from the buffer. A very useful channel for the design ofq@ex coordination principles
in Reo is the synchronous drain. It has two source ends (bsinkoend). A data item has
to be written on both ends simultaneously and both are besstgayed.

The nodes of a Reo network represent sets of channel endg.afike through Reo’s
join operator and can be classified into source, sink andanixeles, depending on whether
all channel ends that coincide on a nagdlare source ends (thehis a source node), sink
ends (themA is a sink node), or whethek combines sink and source ends (thkrs a
mixed node). Source and sink nodes represent input and toppts where components
might connect to the network. The mixed nodes serve as wuthere data items can be
transmitted through the network.

Concurrent I/O-operations. For simplicity of the paper, we assume here a fixed finite
and nonempty sdData of data items that can be written or taken from the channéld(|
is a set of network nodes then the observable data flow at saongent can be described
by aconcurrent 1/0O-operation This means a paifN,d) whereN is a nonempty node-set
(i.e.,0#N C N\) andd: N — Data. The intuitive meaning of a concurrent I/O-operation
(N, d) is that the node# € N synchronize their I/O-operations such tlg#) is the data
item observed at nodd. More precisely, each source node= N writes data itend(A)
at all channels with a source end dnwhile each sink nodé < N takes data itend(A)
from one of the channels with a sink end AnThe mixed node# € N readd(A) from one
of the channels with a sink end @nand simultaneously write§(A) at all channels with
a source end oA. In the moment where the concurrent 1/0-operatjdhd) is performed
there is no data flow at the other nodgs A\ N.

3

KLUEPPELHOLZ, BAIER

Constraint automata have been introduced to provide a csitigal, operational se-
mantics for Reo networks6]. The states of the automaton for a Reo network represent
the configurations (e.g., contents of the buffers for FIF@rotels), while the transitions

model the enabled concurrent 1/0-operations 6lritie transitions have the formN’—d°> p
whereq and p are the starting and target states, respectivglis the set of nodes where
I/O-operations are performed simultaneously dod a data constraint, i.e., a boolean con-
dition on the data items written or read at the nodes N. According to our BDD-based
implementation (see Sectiaf), we go one step further towards a symbolic representation
and deal with transitiong S, p whereg is an |/O-constraint, i.e., a condition on both, the
nodes where 1/0O-operations will be performed and the datast Furthermore we depart
from [6] by dropping the requirement that all runs have to be infinitée also deal with
finite runs, which are necessary to argue about deadlockgroafions.

I/O-constraints. We use a symbolic representationseftsof concurrent I/O-operations
by means of boolean conditions on the nodes A and the data itemda written or read
at nodeA. Formally, anl/O-constraintfor A is a propositional formula built by the literals
A (whereA €) and the atomic formulas(tla,,...,ds) € R” wherek > 1, Aq,..., A¢
are pairwise distinct nodes aRiC Datak. Throughout the paper, we will use intuitive
notations like tla = 0” for “da € {0}” or “da # dg” for “ (da,ds) € {(8a,8s) € Date? |
0a # 0g}”, and writelOC for the set of all I/O-constraints. 1/0O-constraints aresipreted
over concurrent 1/O-operation®N, d) in the expected way, i.e(N,d) = Aiff A< N and
(N,d) = (da,, - .., da,) € Riff {Aq,...,Ac} CNA (8(A1),...,0(Ax)) € R. The propositional
logic operators have their standard semantics. We Wutg, for the set of concurrent
I/O-operations(N,) where® # N C A’ and (N, d) = g. Note that the semantics of 1/O-
constraints depends on the underlying nodes¢etFor example[da = dg 4 = {(N,9) |
{AB} CNC A[,8(A) =8(B)} and] truef, = {(N,8) | 0# N C A[,6: N — Data}. Two
I/O-constraintsy; andg, are A’-equivalent, denoteds =4 92, iff [g1la = 19214 If the
node-set is clear from the context we simply wiitdl and= and speak about satisfiability
and equivalence of I/O-constraints.

Definition 2.1 A constraint automaton (CA) is a tupfe = (Q, A, —,Qo, AP, L), where
Qs a set of statesg)(a set of nodes, disjointly partioned infig = A" A K A,
Qo C Q the set of initial states;—C Q x IOC x Q the transition relationAP a finite set
of atomic propositions, ant : Q — 2P a labeling function. The nodes (5™ (A/S"
A™X) are called source nodes (sink nodes and mixed nodes, tivggc The instances
of a transition(q, g, p) are tuples(g,N,d, p) where(N,d) € [g[,.. Throughout the paper,
we only consider finite constraint automata, i.e., we regthatA, Q and— are finite.

In the sequel, we use arrow-notatioqsi p for a transition(q,g,p) andq N2, p
for its instances. Figl illustrates the constraint automata for a synchronous reélanith
source nodé\ and sink nodd3, a FIFO1 channel with source nodeand sink nodd3 and
the data domaiata= {0,1} and a synchronous drain with source nodesndB. In all
three cases the node set\é= {A,B}. The I/O-constraints = dg” in the automaton for
the synchronous channel indicates the concurrent I/Oatipess({A,B},d) whered(A) =
d(B), while the I/O-constrain® A B in the automaton for the synchronous drain represents
all concurrent 1/0-operations of the for(§A,B},d). For the FIFO channel one might use
the atomic propositionemptyandfull with the obvious labeling function.

4

KLUEPPELHOLZ, BAIER

da=ds

AANB

synchronous FIFO1 synchronous
channel channel drain

Fig. 1. CA for a synchronous channel, FIFO1 channel and sgncius drain

For stateg, the 1/0O-constraintsoc(q, p) = V{9 | q N p} represents the weakest condi-
tion on the I/O-operations at the nodes that have to be sgnded for moving within one
step fromqto p. Thus, ifP C Qthenioc(q, P) =V ,cpioc(q, p) stands for the set of all con-
current I/O-operations that are enabledjiand lead to a configuration ia. With P = Q,
we get a boolean characterizatimt(q) = ioc(qg, Q) for the set of all enabled concurrent
I/O-operations irg.

Stateq is calledterminalif ioc(q) A Aacas 7A = falsewhereA> = AU A This
condition means that in all enabled concurrent 1/0-openating at least one of the sink
or source nodes is involved. These I/0-operations mighehesed if the components that
connect to these nodes are not willing to provide the comedimg write or read operations.
Thus, data flow might stop in terminal states.

The intuitive operational behavior of a constraint autamatan be formalized by its
runs. Runs in a constraint automaton are defined as finitdfioitthsequences of consec-
utive transition instances. In the case of finite runs, wevathat they end with a special
pseudo-transition with the labgl, denoting the end of data flow, provided that the last
state is terminal. |.e., finite runs have the form

(1) %

whereq;_1 Mo gi are transition instances £ 1, ..., k) andgg is terminal for finite runs
ending with a,/-transition (case (2)). The lengtf| € N U {w} is defined as the number of
transition instances taken th(possibly including the pseudo-transition with lakg). A
maximal run means an infinite run or a finite run that ends wipkeudo-transition labelled
by /. We writeRungq) for the set of all runs starting igandMaxRungq) for all maximal

runs starting irg.

N.S No,5 Na,& . L - .
If 8 =0y ——— Q1 ——— gp —— ... is an infinite or finite, but non-maximal run

then the word Nz, 1) (N2,82) (N3, 83) ... obtained by taking the projection to the sequence

of concurrent I/O-operations is called the 1/0O-streanBofFor finite maximal runs, say

8 = o Nde | N quqk, the 1/0O-stream 08 is the word(Ny, &) (Nk, &) /-

Ni,01 Ni, Sk Ny,81 N, Ok N4

Ok or (2) qo Ok — Ok

3 Branching Time Stream Logic

In this section we introduce a branching time temporal Idgicreasoning about the con-
trol and data flow of a constraint automata. The logic, caBednching Time Stream
Logic (BTSL, combines features of CTLLL,12], PDL [15] and timed data stream logic
(TDSL) [3,9,4]. Asin CTL, formulas may refer to the configurations of a canent con-

5

KLUEPPELHOLZ, BAIER

nector (states of a constraint automata) by means of atompopitionsap € AP and may
use the path quantifieesandV. Path properties are specified by the standard until operato
or the PDL/TSDL-like modality(a) wherea is a regular expression specifying sequences
of 1/0-operations at the nodes.

Branching Time Stream Logic BTSL. A BTSLsignature is a tupléAP, () consist-
ing of a finite nonempty seP of atomic propositions and a finite nonempty node%&et
The syntax oBTSLhas three levels: state formulas (denoted by capitol greg&rs®,
W), run formulas (denoted by the small greek leth¢rand regular 1/0O-stream expressions
(denoted by the lettax). The abstract syntax &TSLis given by the following grammar
whereap € AP andg € I0C:

®:=true|ap| P1AD; | ~® | 3¢ | Vo
0= UD; | ()P
a:=g|stop| a* | —a | ar; 0z [arUaz |arna;

The intuitive meaning of the state formulas and the untilrafge U is as in CTL. In
the PDL-like formula(a)®, the regular I1/0O-stream expressionspecifies a set of finite
I/O streams, i.e., finite sequences of concurrent I/O-djmers, possibly ending with the
symbol,/. Intuitively, (a)® holds for a maximal run if it starts with a finite prefix where
the data flow matches the conditions specifiediby

Other operators can be derived, eg® = true U ® (eventually) vO® = -3S-d and
JO0® = V<O (always). The dual to the PDL-like modality) is obtained byd[a]® =
=V (a)=P andV[a]® = -3 (a)—®P. Intuitively, [a]P holds for a maximal run if all its finite
prefixes®, where the induced 1/O-stream belongs to the language diyem, end in a
state whereab holds. The next step operatop of LTL/CTL-like logics arises as a special
instance of-) by O® = (true ®.

The semantics of a regular data expressiotis provided by means of a language
£,c(a) € 295 wherelOS denotes the set of all finite I/O-streams, i.e., finite seqasn
of concurrent 1/O-operations, possibly ending with thecsglesymbol,/ denoting that
there is no further data flow. We defiflg (g) to be the set of all concurrent I/0O-operations
(N,d), viewed as words (I/O-streams) of length 1, such tha®) € [g[,,. The language
Ly (stop is the singleton sef./}. The operatorsJ, N and - in the grammar for regular
I/O-stream expressions have the standard meaning,i.setands for intersectior,) for
union, and- for complementation. (Complementation and intersectioumd be dropped
in the syntax of regular I/O-streams expressions withoutetesing the expressivity of the
logic. We included them in our syntax since there are no dasgular expressions for
=0 Oor a1 Ndy.) The meaning of ; and agrees with standard concatenation and Kleene
closure, except for a special treatment\gf If £1,£, C 205 then £;; £, arises by the
pointwise concatenationi; ; 0, of the elements i, € £1 and the elements, € £, where
01; 02 = 01 if 01 ends with,/. The Kleene closure is then defined in the standard way by
£* =J£"whereg® = {&} (the language consisting of the empty 1/O-streag)= £ and
gl— g, en

BTSLformulas over the signatur@\P, () are interpreted over a constraint automaton
with the node-sef\’ and the sefP of atomic propositions. Fofl = (Q, A, —,Qo, AP, L),

6

KLUEPPELHOLZ, BAIER

the satisfaction relatiop-4 for BTSLstate formulas is defined in the standard way:

q =4 true

qFaap < ape L(q)

qFa~® = qFEa®

qFa P1AD2 <= =4 P andql=4 P2

qF23¢ <= there exists a ru € MaxRungq) s.t.6 =5 ¢
qE=a Vo <= for all runs6 € MaxRun$q): 6 =4 ¢

The meaning of the path formulas is as follows.6lfs a maximal run the® =4 (a)®
iff there exists a finite prefi® of 8 such thatp =4 ® for the last statep of 8 and the
I/O-stream o’ belongs tof, (a). The semantics of the until operator is as in CTLO I§
amaximal run in4 then the satisfaction relatidh=4 (-) for BTSLrun formulas is defined
as follows.

If 0= g~ g 2%, q, "%, isinfinite then

OF4 ()P <= Jj>0s.t.q; =42 P and (N1,81)...(N;j,9j) € Lqr(a)

If ©=do N, Dk Ok -, qx is finite then

B4 (0)® <= eitherd0< j<ks.t.qj 4P and (Ni,8;)...(N;j,9j) € £y ()
or ok =2 @ and(Ng,81) ... (Nk, &) v/ € Lq(a)

For 0 to be an infinite or finite maximal run with the state sequemp@® 0y . .:

OFaP1 UDP, <= 0L j<[6]st.qj g P2AVOLIi <. O =g P2

|
Let Satz(®) = {g € Q | g4 ®}. If 4 is clear from the context then we skip the
subscript4 and simply write= andSaf{-). AutomatonA fulfills ®, denoted4 |= @, if
Qo =4 @ for all initial statesgp € Qo.

Example 3.1 For a synchronous channel with source nédand sink nodeB the BTSL
formulaVOV(stopuU (da = dg))trueholds, asserting that all runs in the automaton consist
of concurrent I/O-operations where data items are tratisthgynchronously from to B,
and possibly end if the components connected tw B do not provide the corresponding
write or read operation. For the FIFO1 channel with sourcger®and sink nodeB, the
formulasY[true’; Alfull and V[true'; Blemptyhold, stating that afteA’s write operation
the buffer is full, while afterB's read operation the buffer is empty. Also the formula
vO-3(AA B)true holds for the FIFO1 channel stating the impossibility of gitaneous
data flow atA andB.

For (the constraint automata of) the network on the left @f. Bj the BTSLformulas
VO-3(AAB)true V[true'; AV (B)true Y|true'; B]Y(A)true and V(true’)v(da = d U dg =

7

KLUEPPELHOLZ, BAIER

d)truehold. (Thed in the picture denotes that the upper buffer is filled with da¢a item
d in the initial configuration.) The former three formulastst#hat data flow af andB
alternates, while the latter formula asserts that only data d, observed at or B, is

Fig. 2. Two Reo networks

®c

While the network on the left has no terminal states, and,tllzta flow is al-
ways infinite, the source node in the network on the right may write into the upper
buffer which yields the configuration where both buffers filed and data flow stops.
Hence, the network on the right fulfills the formuldgrue’ ; A]v((B; A) U (C; stop)true,
V[true'; B]Y(A)trueandv[true*; Clboth_buffers_fullwhereboth _buffers_fulls an atomic
proposition with the obvious semantics.

[4 o
s : .
Ao —

T@LDLDHLDJ

Fig. 3. A sequencer

Fig. 3 shows the network for a sequencer, built out of 4 FIFO1 chishaed sev-
eral synchronous channels and drains that allowsAf® to send messages ® in
the orderAg A1 Ao AsAgA1A2As.... This property can be formalized by the formulas
—3((true'; A ; Aj))true where 0<i < j and j # i+ 1 (modulo 3). Other properties
that hold for the sequencer akgtrue’; (—stopn —B)|false V|[true'; Alfilled(i+1) and
VD(fiIIed(i+l) — 3(da, = dB>true) wherefilled(i+1) is an atomic proposition stating that
the (i + 1)-st buffer is filled (modulo 3).

The terminal states of a constraint automaton are charaeterby the formula
Prerminal = 3(Stop true [|

4 SymbolicBTSLModel Checking

The BTSLmodel checking problem takes as input a Reo network, pgstilgkether with
constraint automata that specify the interfaces of the amapts that are connected to the
source and sink nodes of the network, ar8lfésLformula which has to be checked for the
network. The automata for the components that are connéatib@ sink or source nodes
of the network describe the environment in which the netwap&rates. They may restrict
the nondeterminism in the automaton for the network, siream transition instances
(concurrent I/O-operations) might become impossible duthé behavioral interfaces of
the components. After connecting a sink and source oolethe network with a port of a

8

KLUEPPELHOLZ, BAIER

componentAis treated as a mixed node. Thus, the automata for the comporight also
decrease the set of terminal states. In case nothing is kabauit the potential behaviors of
the components that will be coordinated by the network,gfegomata can be skipped, in
which case all possible interactions of the sink and souodkes will be taken into account
for the analysis.

Reo
BDD representation BTSL model answer "yes"/"no”
for the composite CA, checking +witness/ counter-example
CA for
component
interfaces BTSL Formula

Fig. 4. Model Checking schema

The schema of our model checker is depicted in Eiglhe first step is to generate an
appropriate representation of the constraint automatencésted with the network, pos-
sibly within the environment given by the automata for thenponents. The goal of the
second step is to verify or falsify whether for the generatedstraint automata a given
BTSLformula holds in all initial states. For certain formula ggthe model checker can
return a witness (e.g., a rthwith 6 = ¢ if the formula to be checked i3$) or a coun-
terexample (e.g., a rudiwith 8 = ¢ if the formula to be checked isp).

In the remainder of this section, we report on a symb@&8icSLmodel checker. We
first summarize the main steps of tB& SLmodel checking algorithm and then explain its
symbolic realization.

The model checking algorithm. BTSLmodel checking relies on a combination of
the CTL model checking algorithml]l] with automata-based approaches. Given a con-
straint automate? andBTSLstate formula®, the idea is an iterative computation of the
satisfaction setSatz (W) for the sub-state-formula$’ of ®.

The treatment of the propositional logic fragment is obgiolihe satisfaction sets for
formulas3(d; U P,) or V(P1 U d,) are obtained as in CTL, only slight modifications
are necessary for a correct treatment of terminal statesfoFoulas of the formd(a)W or
J[a]w, 2 we first apply standard algorithms to generate a nondetéstiairiinite automata
(NFA) zZ for the regular 1/0O-stream expression The alphabet of, i.e., the range of the
transition labels in4, is IOCU{,/}. In fact, beside the specig/-transitions,Z can be
viewed as a constraint automala= (Z, N, —, Zy,Z¢) with an additional seZg of final
(accept) states. The atomic propositions and labelingtimmare irrelevant forz. By the
special role of the end symbgl, we may assume tha’s state spac& contains a subset

Z,, such that (i)z Yz impliesz € Z /, (i) z 7€ Z ,impliesg = /, (iii) the states in
Z , do not have successors.

Given 4 and Z, we then built the producl x Z where the states are paifg,z) con-
sisting of a state) in 4 and a state in Z. The transitions in4 x Z are obtained by the

2 We explain here an algorithm fata]W. The treatment of formulas(a)W is obtained by the duality law/(a)W =
—3Ja]-W.

9

KLUEPPELHOLZ, BAIER
following rules:

93, Az 7 AgLgelOC qisterminaling A z-Y, 7
91/\G2

(0,2 ——axz (d,Z) (9,2) L’ﬁlxz (9,2)

where we use the subscrip®s Z or 4 x Z for the transition relations itd, Z and 4 x Z,
respectively. The product x Z is equipped with two atomic propositiossf¥) andfinal
and the labeling function that assigeafW¥) to all states(q,z) whereq =4 W andfinal

to all states(q,z) wherez € Zx. The following proposition (see appendix for the proof)
provides a reduction to CTL.

Proposition 4.1 (Reduction to CTL)
(@) qFE4 (o)W iff there exists g€ Zg with (9,2p) =4+ z IO (satW) A final)

(b) If 4 is deterministic then &4 J[a|W iff (0,20) F4xz I0(safW) v —final) where 3
is the initial state ofZ.

Part (a) of Prop4.1allows to comput&at 3(a)W) by means of a backward reachability
analysis in4 x Z. ForSat3[a]W¥), the second part of Prog.1suggests to switch frorg
to an equivalent deterministic finite automata (DFA) anddarsh for cycles in a subgraph
of the product of4 and the DFA. However, the determinization Bf(which can cause an
exponential blow-up) can be avoided by applying Algoritthm

Algorithm 1 Computation oSa{3[a]|W)

construct an NFAZ for a and built the producl x Z;

V:={(0,2) €eQxZ|qeSa(¥)Vvz¢ Z},

repeat
V' :=V;
R:={(q,2) | V transition instanceq N—‘éq q 3z N—'6>Z Zst(q,Z)¢V};
V:=(V\R)U{(q,2) €V |qterminalA z€ Z ,}

until (V' =V);

return{qe Q| (q,20) €V for all zp € Zp}

Proposition 4.2 Algorithm 1 computes the set of states @ where =4 J[a]W¥.

Proof. LetV be the set of state),z) that belong td&/ when the repeat-loop terminates.
Furthermore, leVp = {(0,2) | g€ SalW) vz ¢ Ze}, Wo = Q x Z\ Vp and letW, be the set
of states that are removed frovhin thei-th iteration. Then,

V=iV =Vh

whereVi;1 =V, \W,1 andn is the number of iterations. Moreover, we have:

(i) for all (g,2) € V whereq is non-terminal there exists a transition instanpe'\ﬂ q

such that(d/,Z) €V for all z No. 2.

(i) for all (q,2) € W and for all runsq = g —=2, | e

N1,01 Ni, Ok

Om of lengthm > i in

A4 there exists a ruz = zg
(Ok, %) ¢ Vo, i-€.,0k 2 W andz € Zr.

10

z of lengthk < min{i,m} such that

KLUEPPELHOLZ, BAIER

Let us now assume thap is a state contained in the set returned by Algorithnirhen,
(00,20) €V for all initial stateszy in Z. We successively apply (i) to obtain a maximal run
in 4

SR M0 o}] Na.%2

such that for all runs

Ne,5 N5
1,01 Z]_ 2,02

in zZ for the same 1/O-stream, we ha(g,z) €V for all indicesi. SinceV C V, we obtain
8 =4 [a]W, and thusgo 4 J[a]W.
We now consider a stat® € Q such thaty =4 J[a]¥. Let

N1,81 N2,82
0=ao 01

be a maximal run in4 such thatd =4 [a]¥. W.l.o.g. 8 has minimal length under all
runs®’ € MaxRunsdgg) where' =4 J[a]W. If we assume thaiy, z) ¢ V for somez, € Z,
say(to,20) € W, then|B| > i and by (ii) there exist& < i and a run

N1,81 Nk, Ok

in Z such that{qy,z) ¢ Vo. Hencez € Zr andgx 4 W. But then(Ng,&1)... (N, &) €
Lqc(a) andB = 4 [a]W. Contradiction. This yield$do,2) € V for all z € Zo. Hence,go
is in the set of states returned by AlgoritHin O

The complexity of the algorithms to compute the satisfaciets o5 (a)W¥ andv|[a]W
are polynomial in the size ofl and Z. Thus, the overall time complexity &TSLmodel
checking is polynomial in the size ¢t and the length of the input formut®, provided the
regular 1/0-stream expressions @mare ordinary regular expressions, i.e., do not use the
complementation or intersection operator, since they ease an exponential blow-up in
the construction ofZ from a.

Symbolic implementation. We now summarize the main features of our symbolic
BTSLmodel checker with binary decision diagrams (BDDs), see[8,§7,16,19]. BDDs
are a data structure for switching functiofis Eval(xy,...,x,) — {0,1} wherexy,...,X,
are boolean variables aritl/al(xs, .. .,X,) denotes the set of evaluations far...,x,. To
represent a constraint automatdn= (Q, A, —,Qo,AP,L) by a BDD, we fix a binary
encoding of the states, i.e., we emb@dnto {0,1}" by an injective functiorbin: Q —
{0,1}" wheren = [log|Q|], choose boolean state variables...,q, and then identify
each state with the evaluation foig,, ..., g, given bybin(g). In the same way, we may
encode the data items by bit tuples. For simplicity, we asshene the boolean data domain
Data= {0,1} and treat the symbold, and the nodes € A as boolean variables.

In the sequel, let\| = {A;,...,Ax} anddi =da, i =1,...,k. We write A andd
for the variable tuplegAq,...,Ac) and (di,...,dx), respectively. The transition relation
— can be identified with its characteristic function and vieves a switching function
T :Eval(g,A,d,q) — {0,1}, where the variable tuplg = (qy,...,q,) encodes the start-
ing state,q = (q;,...,q,) the target state, whil& andd serve to represent the concurrent
I/O-operations. For instance, the transition relationshef constraint automata for a syn-
chronous channel with source nodeand sink nodd3 and a synchronous drain are given

11

KLUEPPELHOLZ, BAIER

by:
Tsync_channe(lqlaA> B, dA> dB> dl) A ANBA (dA — dB) A dl

Tsync_drair{ql,A, B, dA’ dB; Q’l) = ANAABA dl

For a FIFO1 channel we have to encode three statedjiséy) = 00, bin(q(1)) = 11 and
bin(g(0)) = 10, and then may represent the automaton by

(g A~GAAN-BA (= da)Ad) V (GuA-AABA (G < dB) A=) A—dh)

The BDD-representation for the transition relation of a Retwork can be constructed in
a compositional manner, by mimicking Reo’s compositionrafmgs with corresponding
operators on constraint automata and applying the anasogygmbolic operations for ma-
nipulating switching functions. We will briefly considerdloin operator which allows to
collapse two nodes into a single node. Using some apprepmietaming of nodes, Reo’s
join operator can be reduced on the automata level to a predostruction that “synchro-
nizes” the data flow at the common nodes of the given constaaitomata (seed]). If 43
and_, are constraint automata with node s@fsand/\j, respectively, then the concurrent
I/O-operations in the product; x 4, are given by the transition instances obtained by the
following synchronization rule and two interleaving rules

g1 92
ql 4 P1, O — 2 P2

. (01,02) ﬂ}ﬂlxﬂz (p1, P2) .
J1 _l’ﬁll P1 g2 —2>ﬂz P2
(qu.62) 2% o (P G2) (qu. o) —Z "% (a1, P2)

where—A§ stands short fof\pca; ~A.

These rules can be realized in a symbolic way by puttiig s =
(T_ql A T/qz) V (T_ql VAN _\9\& VAN id/qz) vV (T/qz AN _\9\6_ A id_ql),Whereid/q = /\qu(q —
d) andQis in the state space cl.

Beside the transition relation, we also need a BDD-reptesktie labeling function.
This can be done by representing the characteristic fumaifdSa{ap) = {q€ Q| ap¢e
L(q)} by a BDD for the induced functioffiy, : Eval(q) — {0,1}. BDD-representationsy
for the satisfaction seSa{W) of the subformula$¥ of ® are obtained by reformulating the
BTSLmodel checking algorithm in a symbolic way with boolean epers and applying
the corresponding BDD synthesis algorithms. A symboliomafulation of Algorithm1
is shown in Algorithm2 where it is assumed that the BDf) for Sa{¥) and a BDD-
representatioferminalfor the set of terminal states has already been construgtedise
the variable tupleg= (qy,...,q,) to encode the states if andz = (z,...,zy) for the
states inZ. Subsetd/ of Q x Z are encoded by the variables gnand z. The notation
V(q,Z) means that the variables Wfare renamed into their primed copies. The s&fs
Zr andZ , are represented by BDDs with the variabies

5 Examples and results

We applied theBTSLmodel checker to a couple of examples. We will report here on
two case studies. All results were achieved on a Pentium.BGHz, 1.5GB RAM with

12

KLUEPPELHOLZ, BAIER

Algorithm 2 Computation of the symbolic representatibyyy for Sa(3[a]V)
construct an NFAZ for 4 and generate BDD-representationsfor the transition rela-
tion of Z and for the set&y, Zr andZ, /;
V= fyV —Zg;
repeat
vii=v;,
R:=VqVAVd. (T; = 3Z.(TzAV(].2)));
V:i=(VVA-R)V (VATerminalAZ)
until (V' =V);
returnvz. (Zo = V) (* symbolic representatiorfs gy for Sa(I[a]WV) *)

Mandriva Linux and kernel 2.6.12. The tool was written in Ce¢empiled with GCC4.0.3
and uses JINCI[g] as library for binary decision diagrams.

Example 5.1 [Dining philosophers]The first example describes the well-known dining
philosophers scenario, modelled in Reo aslin$ee Fig5.

A 4

>P< ‘takelefti takerighti‘
take tak +1)mod n

PHILOSOPHERR

return return;i; 1ymod n
>O< ,retumlefti returnrighti, >0«

PO

Fig. 5. Dining philosophers scenario

The interface of philosophérhas four output portéake leff, take_right, return_left
and return_right that serve to take and return the chopsticks on the left agitt of the
philosopher. The chopsticks are modelled by a FIFO1 chaamkynchronous drain. The
constraint automata for the interfaces of the philosophesthe chopsticks are shown in

Fig. 6.

;

(—takeleftj A ~takeright A
returnleft; A returnright;)
—take Areturn

(takeleft; A —takeright A
—returnleft; A —returnright;)

takg A —return

availablg

(—takeleft; Atakeright;A
—returnleft; A —returnright,)

Fig. 6. CA for philosopher and chopstick

13

KLUEPPELHOLZ, BAIER

Table 1 illustrates the efficiency of the symbolic approach to carwdtthe BDD-
representation of the constraint automatdrior the whole system by the symbolic join-
operation. The first column “size” shows the number of plafdsers. The second column
“time” shows the time needed for the synthesis phase, whaeldst column “reachable
time” refers to the time needed to compute the reachablemieag of 4. The other two
columns refer to the size of the generated BDD fbaend the maximal size of the BDDs
generated during the symbolic computation.

Size | Time | BDD Nodes| Peak | Reach Time
200 | 0.98s 33146 285523 0.24s
400 2.18s 66546 572523 0.45s
800 | 4.97s 133346 1146523 0.86s
1600 | 12.69s 266946 2294523 1.81s
3200| 35.12s 534146 4590523 3.96s
6400 | 11221s| 1068546 | 9182523 8.53s

Table 1
Synthesis results for the dining philosophers

To give an impression of the size of the state space: the abéelpart of the CA for
800 philosophers consists of about4®states. Several properties have been checked for
this model of the dining philosophers. Tal@ehows the results for thré@TSLformulas.

The columns refer to the number of philosophers, numberegssin the model checking
procedure namely the number of iteration within the fixpaomputation and the total
amount of time needed to verify (or falsify) the given formaul

Size Formula Steps| Time Peak

200 vO(~(eatoo/ eator)) 199 | 17.78s | 5169232
200 | VO[3(true;take_right)trug 798 | 13504s| 34762951

3200 | 3(true’;take;take;i 1)mod n €at 5 16.56s | 9303687

Table 2
Model Checking results for the dining philosophers

The second formula does not hold since there is the run whephitbosophers take
their left chopstick and then wait forever for the missinghti chopstick. This deadlock
situation has been found with 798 iterations by means of &viaa analysis. Computing
the reachable part first by means of a forward analysis, thdldek can be found in 403
steps within 132s only.

Example 5.2 [Mutual exclusion]The second example is the component connector shown
in Fig. 7 that realizes a mutual exclusion protocol foparallel processe#(, ..., P,) where
at each time instance at mdsinay perform their critical actions.

We assume here that the behavioural interface of each campBnis represented by
the constraint automaton also depicted in Fig.

14

KLUEPPELHOLZ, BAIER

Q
w0
©
Q
o) requestA —enter A —release
<
[0}
3
c
B—| |
s
ur
e —requestA enter A —release
o
o
o —+e— - [}—e y '
requey A1 A /:k release @

Fig. 7. Mutual exclusion scenario and CA for one process

Table3 summarizes the results for the generation of the BDD-reprtagion, wheren
is the number of processes akithe maximum number of processes allowed to be in their
critical section at the same time. For 200 processeskandO this CA consists of more
than 5 10'1° reachable configurations.

n k | Time | BDD Nodes| Peak | Reach Time
200 5 | 4.34s 9617 1735363 0.15s
200 | 20 | 5.74s 11907 2295538 0.89s
200 | 60 | 9.38s 17986 3789338 9.64s

400 | 5 | 17.17s 18617 5933461 0.29s
400 | 20 | 20.14s 20907 7045636 1.64s
400 | 60 | 28.64s 26986 10011436 1177s

800 | 5 | 6299s 36617 20508457 0.58s
800 | 20 | 69.26s 38907 22724632 3.07s

800 | 60 | 85.99s 44986 28634432 20.58s

Table 3
Synthesis results for the mutual exclusion network

We performed the analysis with seveBl SLformulas. Tablet shows the results for
three formulas®; = V[request] (A<, —crit;),

®, = J(true'; enter; Ag; (entep A Ay); Ag; (entes A Az))(crity A crity A crit3) and

®3 = V[true'; enteg; (—releasg;...; entek; (—releasg*)|—3((—releas¢*; enteg. 1) true

6 Conclusion

The purpose of the paper was to explain the functionality fawtdations of our model
checker for Reo networks. The efficiency has been illusiratetwo examples that show
that our model checking approach can handle even very latyeorks with up to 187%°
configurations in a reasonable amount of time. Given the vadge of applications of the
Reo framework, see e.gl3,20,9], we believe that our model checker yields an important

15

KLUEPPELHOLZ, BAIER

Processesnj | Semaphorsk) | Time (®@1) | Time (@) | Time (®3)
200 5 0.80s 0.15s 0.68s
200 20 0.86s 0.19s 0.82s
200 60 0.82s 0.38s 1.89s
400 5 1.74s 0.31s 147s
400 20 1.82s 0.35s 1.58s
400 60 1.43s 0.53s 2.53s
800 5 4.57s 0.62s 3.69s
800 20 4.58s 0.65s 3.63s
800 60 3.62s 0.87s 4.61s

Table 4
Model Checking results for the mutual exclusion

contribution for formal reasoning about exogeneous coatibn models. Beside further
optimizations to increase efficiency and case studies, Weexiend our implementation
to reason about real-time constraints with the logic TDSJLofr a branching time version
thereof and about dynamic reconfigurations by means of thie kwonsidered in10] or
other formal frameworks for Reo’s dynamic operations.

References

[1] F. Arbab, Abstract Behavior Types: A Foundation Model @mponents and Their Composition, [#{,B3-70, 2003.

[2] F. Arbab, Reo: A Channel-based Coordination Model fom(®onent Composition, Mathematical Structures in
Computer Science, 14(3):1-38, 2004.

[3] F. Arbab and C. Baier and F. de Boer and J. Rutten, ModedsTemporal Logics for Timed Component Connectors,
In Proc. SEFM’04, IEEE CS Press, 2004.

[4] F. Arbab and C. Baier and F. de Boer and J. Rutten, ModadsTamporal Logics for Timed Component Connectors,
Software and Systems Modelling (to appear), 2006.

[5] F. Arbab and J.J.M.M. Rutten, A coinductive calculus ofrpponent connectors, In Proc. 16th WADT, volume 2755 of
LNCS, pages 35-56, 2003.

[6] C. Baier and M. Sirjani and F. Arbab and J.J.M.M. Rutterpddling Component Connectors in Reo by Constraint
Automata, Science of Computer Programming, 61:75-1136200

[7] F.S. de Boer and M.M. Bonsangue and S. Graf and W.-P. dedRoEormal Methods for Components and Objects,
LNCS 2852, Springer, 2003.

[8] R. Bryant, Graph-Based Algorithms for Boolean Functianipulation, IEEE Transactions on Computers, C-35, 1986.

[9] D. Clarke and D. Costa and F. Arbab, Modeling Coordirmaiio Biological Systems, In Proc. of the Int. Symposium on
Leveraging Applications of Formal Methods, 2004.

[10] Dave Clarke, Reasoning about Connector ReconfigurdltidBasic reconfiguration Logic, In Proc. FSEN'05, Teheran
Electronic Notes in Theoretical Computer Science, 2005.

[11] E. Clarke and E. Emerson and A. Sistla, Automatic Veatifien of Finite-State Concurrent Systems Using Temporal
Logic Specifications, ACM Transactions on Programming Legges and Systems, 8(2):244-263, April 1986.

[12] E. Clarke and O. Grumberg and D. Peled, Model Checkintj; Rtess, 1999.

[13] N. Diakov and F. Arbab, Compositional Construction oéMServices Using Reo, In Proc. International Workshop on
Web Services: Modeling, Architecture and Infrastructu@gHIS 2004), Porto, Portugal, April 13-14, 2004.

16

KLUEPPELHOLZ, BAIER

[14] E. Emerson and C. Lei, Modalities for Model CheckingaBching Time Strikes Back (extended abstract), In Proc.
12th Annual ACM Symposium on Principles of Programming Lizenges (POPL), pages 84-96, SIGPLAN, ACM
Press, 1985.

[15] M. Fischer and J. Ladner, Propositional dynamic lodicegular programs, Journal of Computer and Systems Science
18:194-211, 1979.

[16] G. Hachtel and F. Somenzi, Logic Synthesis and Verifica#lgorithms, Kluwer Academic Publishers, 1996.
[17] K. McMillan, Symbolic Model Checking, Kluwer Academiublishers, 1993.
[18] J. Ossowski, JINC, a bdd library (to be published), wjgasowski.de.

[19] I. Wegener, Branching Programs and Binary Decisiongtaens. Theory and Applications, Monographs on Discrete
Mathematics and Applications, SIAM, 2000.

[20] Z. Zlatev and N. Diakov and S. Pokraev, Construction efjbltiation Protocols for E-Commerce Applications, ACM
SlGecom Exchanges, 5:2):11-22, November 2004.

17

	Introduction
	Reo and constraint automata
	Branching Time Stream Logic
	Symbolic BTSL Model Checking
	Examples and results
	Conclusion
	References

