
Synthesis of Reo Circuits For Implementation of
Component-Connector Automata Specifications

Farhad Arbaba,c, Christel Baierb, Frank de Boera,c, Jan Ruttena,d , Marjan Sirjanie

a CWI, Amsterdam, The Netherlands
{farhad, janr, frb}@cwi.nl

b Universität Bonn, Institut für Informatik I, Germany
baier@cs.uni-bonn.de

c Universiteit Leiden, The Netherlands
d Vrije Universiteit, Amsterdam, The Netherlands

e Sharif University of Technology, Tehran, Iran

Abstract. Composition of a concurrent system out of components involves coor-
dination of their mutual interactions. In component-based construction, this coor-
dination becomes the responsibility of the glue-code language and its underlying
run-time middle-ware. Reo offers an expressive glue-language for construction
of coordinating component connectors out of primitive channels. In this paper we
consider the problem of synthesizing Reo coordination code from a specification
of a behavior as a relation on scheduled-data streams. The specification is given
as a constraint automaton that describes the desired input/output behavior at the
ports of the components. The main contribution in this paper is an algorithm that
generates Reo code from a given constraint automaton.

1 Introduction

Composing components into a concurrent system involves coordination of their mutual
interactions. The internals of black-box components cannot be modified to implement
such coordinated interactions. Coordination, therefore, becomes the responsibility of
the “glue-code” that inter-connects the constituent components of a composite system,
and of its underlying run-time middle-ware. Reo [2] offers a powerful glue language
for implementation of coordinating component connectors that resemble electronic cir-
cuits and are based on a calculus of mobile channels. Reo is being used, for instance, in
the context of the Cybernetic Incident Management project [9] for composition of web
services, which constitute the black-box components of dynamically configured dis-
tributed applications [11]; to model business processes, such as electronic auctions [20];
and for modeling coordination in biological systems [10].

This paper addresses the synthesis problem of component connectors with Reo as
our target implementation language. The input for this problem is a specification of
a coordination protocol and its output is a Reo connector circuit that implements this
protocol. Synthesis problems address the issue of the (algorithmic) generation of an im-
plementation from a given specification and have a long tradition in computer science.
In the context of switching circuits, the synthesis problem was first raised by Church [8]

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 236–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synthesis of Reo Circuits For Implementation of Component-Connector 237

and is nowadays well-understood. For temporal logical specifications, several synthesis
algorithms have been suggested that rely on the close relationship between the synthesis
and satisfiability problem or on a game-theoretic view, see e.g. [12, 15, 6, 16, 19, 18, 13].
The output of these synthesis algorithms are some kind of automata or state-transition
graphs. Our goal is a step further toward an implementation by generating Reo code
from a given automaton specification. Thus, our contribution is more in the spirit of
gate-level hardware synthesis from given automata specifications. Our starting point is
a specification of a component connector as a relation over timed data streams [7, 5],
represented by a constraint automaton [4]. Constraint automata are variants of labeled
transition systems that operationally describe the maximally parallel data-flow activity
through the nodes in a Reo circuit. In [4], constraint automata are used to provide an
operational semantics for coordination mechanisms formalized by composition of Reo
connector graphs. In a constraint automaton, the states of the automaton represent the
possible configurations (e.g., the contents of the FIFO-channels of the Reo-connector);
transitions going out of a state represent data-flow at that state and its effect on the
configuration.

In this paper we are not primarily concerned with the derivation of (constraint) au-
tomata representations from higher-level behavior specifications, such as in temporal
logic or relations on timed data streams. Similar derivations, for instance, in the field
of digital circuit design, are well-known. The main contribution of this paper is an al-
gorithm that takes as input a constraint automaton A and produces a Reo connector
graph that implements the relation on timed data streams specified by A . This is tan-
tamount to compiling an automaton down to actual concurrent executable code for a
distributed implementation of the coordination behavior specified by that automaton.
Superficially, compiling constraint automata specifications to Reo circuits seems sim-
ple. By analogy, derivation of digital circuits from Mealy automata specifications are
well understood. However, constraint automata (and Reo circuits) can exhibit far more
complex behavior than digital circuits, including combinations of synchrony and asyn-
chrony, and relational, as well as simple (input/output) functional, interdependencies.
In the light of this fact, it is far from obvious if synthesis of Reo circuits from constraint
automata is possible at all, and if so, whether it can be done efficiently.

The rough idea of our synthesis algorithm is as follows. We first transform the au-
tomaton A into an equivalent scheduled-data expression which is a slight variant of an
ordinary ω-regular expression. We then construct circuits for the atomic expressions
and composition operators on Reo circuits that capture the semantics of concatena-
tion, union, and infinity-closures. The major difficulty is the treatment of the atomic
expressions that describe a complex “one-step” coordination scenario with possibly
data-dependent synchronous and asynchronous behavior.

The rest of this paper is organized as follows. Section 2 contains a summary of
the main features of Reo. Section 3 recalls the definition of constraint automata and
their accepted TDS-languages. In Section 4, we show the equivalence of scheduled-
data expressions and constraint automata. The construction of a Reo circuit from a
given expression is explained in Section 5. Section 6 concludes the paper.

238 F. Arbab et al.

2 A Reo Primer

Reo [2] is a channel-based exogenous coordination model wherein complex coordi-
nators, called connectors, are compositionally built out of simpler ones. The simplest
connectors in Reo are a set of channels with well-defined behavior supplied by users.
Components can instantiate, compose, connect to, and perform I/O operations through
connectors. Here, as in [5, 4], we do not consider the dynamic creation, composition,
and reconfiguration of connectors by components. We restrict our attention to connec-
tors that have a static graphical representation as a Reo circuit which coordinates the
data-flow through the channels connecting the input/output ports of components.

Reo’s notion of channel is far more general than its common interpretation and
allows for any primitive communication medium with exactly two ends. The channel
ends are classified as source ends through which data enters and sink ends through
which data leaves a channel. Although Reo allows for an open-ended set of channel-
types with user-defined semantics, for our purposes in this paper, we restrict ourselves
to the channel-types shown in Fig. 1.

fifo channel
(1-bounded) channel

synchr.

channel
lossy

channelfilter spout
synchr.

drain spout
asynchr.

drain

P

P-producer

P

synchr.
synchr. asynchr.

Fig. 1. Basic channel-types in Reo

The simplest form of an asynchronous channel is a FIFO channel with one buffer
cell (called a 1-bounded FIFO channel or simply a FIFO1 channel). We graphically
represent a FIFO1 channel by a small box in the middle of an arrow. In the example in
Fig. 1, the left channel-end is a source, and the right end is a sink. The buffer is assumed
to be initially empty if no data item is shown in the box (this is the case in Fig. 1).
The graphical representation of a FIFO1-channel whose buffer initially contains a data
element d shows d inside the box. FIFO channels with two or more buffer cells can be
produced by composing several FIFO1 channels, as for instance, explained in [5, 4].

A synchronous channel (depicted as a simple solid arrow) has a source and a sink
end, and no buffer. It accepts a data item through its source end iff it can simultaneously
dispense it through its sink. A lossy synchronous channel (depicted as a dashed arrow)
is similar to a synchronous channel, except that it always accepts all data items through
its source end. If it is possible for it to simultaneously dispense the data item through
its sink (e.g., there is a take operation pending on its sink) the channel transfers the data
item; otherwise the data item is lost. For a synchronous filter channel, its “pattern” P
(for our purposes here, formalized as a set P ⊆ Data) specifies the type of data items
that can be transmitted through the channel. Any value d ∈ P is accepted through its
source end iff its sink end can simultaneously dispense d; all data items d /∈ P are
always accepted through the source end but are immediately lost. The P-producer is a
variant of a synchronous channel whose source end accepts any data item d ∈ Data, but
the value dispensed through its sink end is always a data element d ∈ P.

Synthesis of Reo Circuits For Implementation of Component-Connector 239

More exotic channels permitted in Reo are (a)synchronous drains that have two
source ends. Because a drain has no sink end, no data value can ever be obtained from
these channels. Thus, a synchronous drain accepts a data item through one of its ends
iff a data item is also available for it to simultaneously accept through its other end as
well. All data accepted by this channel are lost. An asynchronous drain accepts and
loses data items through its two source ends, but never simultaneously. Synchronous
and asynchronous spouts are duals of their corresponding drain channel types, as they
have two sink ends.

A complex connector has a graphical representation, called a Reo circuit, which
can be produced by applying certain composition operators to channels. In our setting,
where we do not consider dynamic aspects of the Reo language, a Reo-circuit is a finite
graph where the nodes are labeled with pair-wise disjoint, non-empty sets of channel
ends, and where the edges represent their connecting channels. The set of channel ends
coincident on a node A is disjointly partitioned into the sets Src(A) and Snk(A), denot-
ing the sets of source and sink channel ends that coincide on A, respectively. A node is
called a source node if Src(A) �= /0 ∧Snk(A) = /0. Analogously, A is called a sink node
if Src(A) = /0∧Snk(A) �= /0. Node A is called a mixed node if Src(A) �= /0∧Snk(A) �= /0.
In this paper, it suffices to assume that all mixed nodes are hidden. In other words, we
abstract away from their names and formalize the behavior of a Reo circuit by means
of the data-flow at its sink and source nodes. Intuitively, source nodes of a circuit are
analogous to the input ports, and sink nodes to the output ports of a component, while
mixed nodes are its hidden internal details. Components cannot connect to, read from,
or write to mixed nodes. Instead, data-flow through mixed nodes is totally specified by
the circuits they belong to.

A component can write data items to a source node of a Reo circuit that it is con-
nected to. A write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently written to
every source end coincident on the node. A source node, thus, acts as a replicator. A
component can obtain data items from a sink node of a Reo circuit that it is connected
to through input operations.1 A take operation succeeds only if at least one of the (sink)
channel ends coincident on the node offers a suitable data item; if more than one co-
incident channel end offers suitable data items, one is selected nondeterministically. A
sink node, thus, acts as a nondeterministic merger. A mixed node is a self-contained
“pumping station” that combines the behavior of a sink node (merger) and a source
node (replicator) in an atomic iteration of an endless loop: in every iteration a mixed
node nondeterministically selects and takes a suitable data item offered by one of its
coincident sink channel ends and replicates it into all of its coincident source channel
ends. A data item is suitable for selection in an iteration only if it can be accepted by all
source channel ends that coincide on the mixed node.
Example 1 (Exclusive Router and Shift-Lossy FIFO1 Channel). Fig. 2 a. shows an im-
plementation of an exclusive router built by composing five synchronous channels, two
lossy synchronous channels and a synchronous drain. The intuitive behavior of this cir-
cuit is that through its source node A, it obtains a data item d from its environment

1 We consider only the destructive take operation here which, e.g., on a FIFO channel, reads and
removes the first data item in its buffer.

240 F. Arbab et al.

ba

A

B C

A

Bo

FIFO2
EXR

Fig. 2. Exclusive router and shift-lossy FIFO1 channel

and delivers d to one of its sink nodes B or C. If both B and C are willing to accept
d then (the merger in the mixed node in the middle of) the exclusive router nondeter-
ministically decides to deliver d to either B or C. No data that passes through A can be
lost because of the synchronous drain and the two synchronous channels in the middle
of the circuit. The synchronous drain ensures that data flow at A is synchronized with
data flow through the node at its opposite end. The merger inherent in this mixed node
guarantees that at most one of its two coincident synchronous channels transfer data,
synchronized with the data flow at either B or C.
The circuit in Fig. 2.b shows an implementation of a shift-lossy FIFO1 channel with
source node A and sink node B. This implementation uses four synchronous channels, a
synchronous drain, a FIFO1 channel whose buffer initially contains a token data item,
o, an empty FIFO2 channel, and an instance of the exclusive router of Fig. 2.a shown
as the box labeled EXR. A shift-lossy FIFO1 channel behaves the same as a FIFO1
channel, except that writing to its source end is never blocked. If at the time of a write
operation its buffer is full, the stored data item in the buffer is lost and the new data
item replaces it in the buffer. The observable behavior of each of these Reo circuits is
represented by a constraint automaton in Fig. 3. Derivation of these constraint automata
as compositions of the constraint automata representing the behavior of the individual
primitives used in their respective Reo circuits appears in [4]. �

In spite of its simplicity, the semantics of Reo is indeed very rich, yielding a sur-
prisingly expressive language [2]. For instance, the relational (as opposed to functional)
dependencies that result in “propagation of synchrony” as well as the way in which the
local behavior of, e.g., lossy synchronous channels imposes non-local constraints on
a circuit, are already evident in the exclusive router of Fig. 2.a. (We use this exclusive
router later in this paper in our synthesis of Reo circuits.) Examples of Reo circuits with
more interesting behavior can be found elsewhere [1], and the reader is encouraged to
see [17] and [5] for the simple, rich, and expressive formal semantics of Reo.
In the remainder of the paper, we discuss the synthesis problem of Reo circuits where
the input specification of the desired coordination is given as a constraint automaton,
as defined in the next section.

Synthesis of Reo Circuits For Implementation of Component-Connector 241

synchronous channel synchronous drain asynchronous drain lossy synchronous

dA = dB
{A,B}

{A,B} {A}

{A}dA = dB
{A,B}

{B}

dA = dB ∈ P
{A,B}

with filter
synchronous channel

{A} dA /∈ P

dB ∈ P
{A,B}

P-producer or spout or spout channel

{A,B}

exrouter

dA = dB
{A,C}
dA = dC

{A}

{A}
{B}

shift-lossy fifo1 channel
(data abstract)

Fig. 3. Constraint automata for some basic channels in Reo

3 Constraint Automata

Constraint automata can serve as an operational model for Reo circuits [4]. The states of
an automaton represent the configurations of its corresponding circuit (e.g., the contents
of the FIFO channels), while the transitions encode its maximally-parallel stepwise
behavior. The transitions are labeled with the maximal sets of nodes on which data-flow
occurs simultaneously, and a data constraint (i.e., boolean condition for the observed
data values). We start with a simple example for a constraint automaton that models a
component with input port A and two output ports B and C which is modeled by a Reo
circuit as shown in the left of the picture below.

{A}
dA = 0 dC = dB = 0

{A} dA = 1

dB = dC = 1{B,C}

{B,C}

A
B

C

The picture on the right shows the corresponding constraint automaton where we as-
sume that only bits 0 and 1 can be transmitted through the channels. The initial state
stands for the configuration where the buffer is empty, while the two other states repre-
sent the configurations where the buffer is filled with one of the data items. The outgoing
transitions from the initial state are labeled with the singleton set {A} which reflects the
fact that in the initial configuration only data-flow at A is possible. If the buffer is filled
then data-flow at A is impossible and only B and C can take the value from the buffer.

In the sequel, we specify constraint automata using a nonempty and finite set Data
consisting of data items that can be sent (and received) via channels and a nonempty
and finite set N = {A1, . . . ,An} of names. Intuitively, we may think of the Ai’s to be
the source or sink nodes of a Reo circuit. We refer to the subsets of N as node-sets.
A data assignment for /0 �= N ⊆ N is a function δ : N → Data. DA(N) denotes the set
of all data assignments for N, and DA the set of all data assignments (on any N). Data
constraints, which can be viewed as a symbolic representation of sets of data assign-
ments, are formally defined as propositional formulas built from the atoms “dA ∈ P”

242 F. Arbab et al.

Bstop

asynchronous
drain

synchronous
spout

0

Component “Init”

Ainit

Component “Stop”

{Ainit},dAinit
= 0 {Bstop}

Fig. 4. Reo circuits and automata for an initializer and a terminator

and “dA = dB”, where A,B ∈ N , dA,dB ∈ Data, and P ⊆ Data. DC(N) denotes the set
of data constraints using only names from N, and DC is a shorthand for DC(N). We
simply write “dA = d” rather than “dA ∈ {d}”. The symbol |= stands for the obvious
satisfaction relation which results from interpreting data constraints over data assign-
ments. Satisfiability and logical equivalence ≡ of data constraints are defined as usual.

Definition 1 (Constraint automata, [4]). A constraint automaton (over Data) is a tu-
ple A = (Q,N ,−→,Q0) where Q is a finite set of states, N a finite set of nodes, −→
is a finite subset of Q × (2N × DC) × Q, called the transition relation, and Q0 ⊆ Q a

nonempty set of initial states. We write q
N,g−→ p instead of (q,N,g, p) ∈−→ and require

that (1) N �= /0 and (2) g ∈ DC(N) is satisfiable. We call N the node-set and g the guard
of the transition. States without any outgoing transition are called terminal. �

The intuitive meaning of a constraint automaton as an operational model for Reo con-
nectors is similar to the interpretation of labeled transition systems as formal models
for reactive systems. The sink and source nodes of a Reo connector circuit play the role
of the nodes in its corresponding constraint automaton. The states represent the config-

urations of the connector. The meaning of a transition q
N,g−→ p is that in configuration

q all the nodes Ai ∈ N perform (synchronously) I/O-operations that meet the guard g,
resulting in a new configuration p, while at the same moment there is no data-flow at
the other nodes Ai ∈ N \N.

Example 2 (Constraint automata). Constraint automata for the various basic channels
types, the exclusive router and shift-lossy FIFO1 channel are shown in Figure 3 (where
valid guards have been omitted). The automaton for a FIFO1 channel with source A
and sink B is the same as the one for the example in the beginning of the section,
except that C has to be removed. These automata do not have terminal states as in
any configuration data flow at some nodes is possible. The left part of Fig. 4 shows
the Reo circuit for an initializer, i.e., a component without input ports (source nodes)
and a single output port Ainit where data-flow at Ainit happens exactly once.2 Thus,
if we connect Ainit with an input port A of another component C via a synchronous
channel with source Ainit and sink A then data-flow at Ainit activates the data-flow at

2 Data-flow at the node on the left, where the two sink ends of a synchronous spout coincide,
is never possible because on the one hand, the sink ends of the spout are obligated to produce
their respective data items simultaneously, while on the other hand the merge semantics of
sink/mixed nodes does not allows for simultaneous data-flow at both sink ends.

Synthesis of Reo Circuits For Implementation of Component-Connector 243

C but prevents any “restart” of C . The situation is similar for the component “Stop”
on the right of the picture where the source node Bstop can put a value into the buffer
exactly once, because afterward the buffer is filled forever as no data-flow is possible
for an asynchronous drain with both source ends coincident on the same node. Thus, if
an output port B of a component C is connected via a synchronous channel with Bstop

then output at B is possible exactly once. In this sense, component “Stop” can serve to
terminate data-flow in other components. �
In [4], we formalized the semantics of a constraint automaton as a relation on timed
data streams. For the purposes of this paper, an equivalent, but simpler concept suffices
which abstracts away from time and describes the “traces” of a constraint automaton by
scheduled-data streams: finite or infinite sequences of pairs 〈N,δ〉, consisting of a set
N of all the nodes that are scheduled to be synchronously (i.e., atomically) active in the
next step, together with a data assignment δ ∈ DA(N) describing the data values that
are input and output.

Definition 2 (Scheduled-data streams, generated language). A scheduled-data stream
Θ = Θ(0);Θ(1); . . . is a finite or infinite sequence of pairs Θ(i) ∈ 2N ×DC, denoted by

Θ(i) = 〈Θ.N(i)
︸ ︷︷ ︸

node-set

, Θ.δ(i)
︸ ︷︷ ︸

data assignment

〉,

such that Θ.N(i) is a non-empty node-set and Θ.δ(i) a data assignment for Θ.N(i). We
write |Θ| to denote the length of Θ (which can be ω). The empty scheduled-data stream
is denoted by ε. SDSN or briefly SDS denotes the set of all scheduled-data streams.
Let A = (Q,N ,−→,Q0) be a constraint automaton, Θ ∈ SDS and q a state in A . A
q-run for Θ in A is a path in A

q = q0
N0,g0−−→ q1

N1,g1−−→ q2
N2,g2−−→ . . .

such that (1) q0 = q and (2) either q and Θ are infinite or q consists of |Θ| transitions
and ends in a terminal state and (3) Ni = Θ.N(i), Θ.δ(i) |= gi for all 0 ≤ i < |Θ|. The
generated language L(A) of A is the set of all scheduled-data streams Θ ∈ SDS which
have a q0-run in A for some initial state q0 ∈ Q0. �
For instance, the SDS-language generated by the automaton for a synchronous channel
consists of all infinite scheduled-data streams Θ with Θ.N(i) = {A,B} and where data
assignment Θ.δ(i) assigns the same data item to A and B.
Although the formal definition of scheduled-data streams does not impose a relation
between the data assignments Θ.δ(i), for a given constraint automaton, there can be a
link between the data constraints Θ.δ(i) and Θ.δ(i + 1). For instance, the automaton
for a FIFO1 channel with source node A and sink node B generates the SDS-language
consisting of all infinite scheduled-data streams Θ with Θ.N(2i) = {A}, Θ.N(2i+1) =
{B}, and with Θ.δ(2i) = [A �→ d] and Θ.δ(2i+1) = [B �→ d], for some d ∈ Data.

In [4], we explain how an automaton for a Reo circuit can be constructed in a com-
positional way. (For the purpose of this paper, the details of that construction do not
matter. The only thing that we use later, in Section 5, is that by applying the above def-
inition to the automaton for a Reo circuit R, we obtain an SDS-language L(R) for R.)
In what follows we show, conversely, how to construct a Reo circuit from a constraint
automaton.

244 F. Arbab et al.

4 Scheduled-Data Expressions

The first step of our construction of a Reo circuit from a given automaton is to trans-
form the automaton into an equivalent ω-regular expression, a so-called scheduled-
data expression. These are built by ε representing the singleton SDS-language {ε} and
the atoms 〈N,g〉 where /0 �= N ⊆ N and g is a satisfiable data constraint for N. The
SDS-language L(〈N,g〉) consists of all scheduled-data streams Θ of length 1 such that
Θ.N(0) = N and Θ.δ(0) |= g. Moreover, we use the standard composition operators ;
(concatenation), ∪ (union) and the closure operators αω (infinitely many repetitions)
and α∞ (finite or infinite repetitions). The formal definition of L(α) for composite ex-
pressions is defined as for ordinary ω-regular expressions and is omitted here.
Similar to the construction of a finite automaton from ordinary regular expressions (see
e.g. [14]), we can assign a constraint automaton to any scheduled-data expression that
generates the same SDS-language and which is linear in the size of the expression.
Since this construction does not play a role in the present paper, its description is omit-
ted. Instead, we use the reverse construction, i.e., of a scheduled-data expression for
a constraint automaton. Although to do so, we may apply the standard algorithms for
generating (ω-)regular expressions from automata (see e.g. [14]), we suggest here an
alternative algorithm. Rather than describing the construction in general, we treat a typ-
ical example. Consider the constraint automaton as shown on the left of the following
picture where a,b,c are pairs of node-sets with corresponding data constraints.

q0 q1 q2

a

b

c
α0 = a;α1

α1 = (b;α0)∪ (c;α2)
α2 = ε

Let αi denote the scheduled-data expression corresponding to (the SDS-language gen-
erated by) state qi, for i = 0,1,2. The three transitions of this automaton give rise to
three equations for the expressions as shown above. Together, they imply the following
equation: α0 = (a;b;α0)∪ (a;c). This equation can be solved, using the following gen-
eral laws for scheduled-data expressions: “if α = (β;α)∪ γ and ε �∈ β then α = β∞;γ”
and “if α = β;α and ε �∈ β then α = βω”. Applying the first law to the equation above
yields the expression α0 = (a;b)∞;a;c for the state q0.

5 From Scheduled-Data Expressions to Reo

We now address the issue of constructing a Reo circuit for a scheduled-data expression
α0. Because the source and the sink nodes of a Reo circuit play different roles with
respect to its environment, and this distinction is abstracted away in scheduled-data
expressions (and constraint automata), we first need to identify the “input” and “output”
of a circuit by partitioning its node set N . That is, our starting point is a description of
a component connector by its input ports C1, . . . ,Cn and its output ports D1, . . . ,Dm and
by (the scheduled-data expression α0 of) a given constraint automaton that specifies the
observable data flow at the Ci’s and D j’s.

In the sequel, let N = {C1, . . . ,Cn}∪ {D1, . . . ,Dm} contain all nodes occurring in
the node-sets N of the atoms 〈N,g〉 in α0, where we assume that the Ci’s are source

Synthesis of Reo Circuits For Implementation of Component-Connector 245

...

...

...

Aα Ãα B̃α Bα

DC ...

Fig. 5. Structure of the Reo-circuit Rα

nodes and the D j’s are sink nodes. Our goal is the construction of a Reo circuit R with
source nodes C1, . . . ,Cn and sink nodes D1, . . . ,Dm such that L(α0) = L(R).

For the construction of R, we use a compositional approach that builds a Reo circuit
Rα for each subexpression α of α0. Fig. 5 shows the general structure of Rα: if the
source node Aα is fed from outside with some data element, then it is put into the buffer
between Aα and Ãα. As soon as Ãα takes the data element from the buffer, the sub-
circuit in the middle is “activated”. Similarly, data-flow inside this sub-circuit stops as
soon as a data element arrives at B̃α, which puts it into the buffer between B̃α and Bα.
Thus, data-flow at the sink node B̃α can be viewed as a signal that Rα has “terminated”.

The nodes C, D in Fig. 5 are there to indicate that there will be some channels
connecting the sub-circuit in the middle of Rα with (some of) the source nodes C and
(some of) the sink nodes D in N . The construction of a circuit R for an expression α0

will be completed by a last step, in which “Init” and “Stop” components, defined in
Example 2, are added to begin and end the data-flow of in the circuit Rα0 , as shown in
Fig. 6. The construction of the circuit will be such that at any moment, exactly one of
the leftmost and rightmost buffers or buffers inside Rα0 will be filled. Thus, we may
consider data-flow through R as a token game, where the token is passed on from left to
right. The reason why we put Rα0 in the context of an initializer and a terminator is that

...

...

...

Aα0 Ãα0 B̃α0 Bα0

Cn
...

StopInit

C1 ... D1 Dm

Fig. 6. The final Reo-circuit R

the circuit Rα0 allows a “restart” of data flow at node Aα0 whenever Ãα0 has consumed
the data item in the buffer between Aα0 and Ãα0 . In fact, the initializer ensures that data
flow at Aα0 occurs exactly once. The reason for using the stop-component is similar.

Concatenation, union and closure. We first explain how to construct a circuit Rα,
assuming we have already constructed the circuits for α’s subexpressions. (If a subex-
pression α occurs more than once in α0, e.g. if α0 = α;α, then we need a copy of the

246 F. Arbab et al.

circuits Rα for every syntactic occurrence of α as a subexpression in α0.) For α = γ;β
the Reo circuit Rα results from combining Rγ and Rβ as follows:

Aα Ãα B̃α BαRγ
BγAγ

Rβ
Aβ Bβ

Note that the internal FIFO-channels “at the end” of Rγ and “at the beginning” of Rβ
(not drawn in the picture) ensure that in the concatenation γ;β data-flow inside Rβ cannot
start before data-flow in Rγ has finished.

For α = γ ∪ β, the Reo circuit Rα is obtained by combining Rγ and Rβ with an
exclusive router that nondeterministically chooses to “activate” the data-flow in either
Rγ or Rβ:

Aα Ãα B̃α Bα

Rγ
BγAγ

RβAβ Bβ

EXR

The Reo circuit Rα where α = β∞ is obtained from Rβ as follows:3

Aα Ãα B̃αRβ
BβAβ

EXR
Bα

For α = βω, the Reo circuit has the following structure.

Aα Ãα Rβ
BβAβ Bα

Init
empty

Here, “empty Init” is a variant of the initializer in Ex. 2, where the buffer is initially
empty. Thus, data-flow never occurs in “empty Init” or at node Bα. Being non-reachable,
it may be omitted; we keep it here so that the circuit retains the general shape of Fig. 5.

The empty expression. For α = ε, we simply use a FIFO1 channel with its source
end on node Aε and its sink end on node Bε. (Using just a single channel departs from
the general schema sketched in Fig. 5, but the nodes Ãα and B̃α are not needed in our
compositional approach.)

3 The syntax of scheduled-data expressions does not include the Kleene closure α = β∗. How-
ever, it could be treated by simply replacing the exclusive router with a fair exclusive router.

Synthesis of Reo Circuits For Implementation of Component-Connector 247

A〈N,h〉 Ã〈N,h〉 B̃〈N,h〉 B〈N,h〉E〈N,h〉

C〈N,h〉 C̄

C
D

PD

PC
for all D ∈ Nsnk for all C ∈ Nsrc

D〈N,h〉

C̃〈N,h〉

Fig. 7. Reo-circuit R〈N,h〉

Atomic expressions. So far the construction of Reo circuits for composite expres-
sions has followed patterns that are familiar from automata theory. Next we come to the
most complicated and most interesting step in our construction, namely the construc-
tion of a Reo circuit for atomic expressions 〈N,g〉. The difficulty lies in the fact that
such expressions model a computation step of a corresponding Reo circuit, in which
certain channel ends are active and others are not. Moreover, we must ensure that at
every active channel end, the right data value is input or output.
Let Atoms denote the set of all atomic expressions 〈N,g〉 of α0. Recall that N is a
nonempty subset of N = {C1, . . . ,Cn}∪ {D1, . . . ,Dm} and g is a satisfiable data con-
straint for the nodes in N. We first describe a general technique to design a Reo circuit
for the atoms 〈N,g〉 ∈ Atoms. (Later we explain how this technique can be made more
efficient in various ways.) We first transform g into its canonical disjunctive normal
form, which replaces it with an equivalent data constraint h1 ∨ . . .∨ hr where each of
the h’s is a formula of the form

h =
∧

C∈Nsrc

(dC ∈ PC)∧ ∧

D∈Nsnk

(dD ∈ PD)

with Nsrc = N ∩{C1, . . . ,Cn}, Nsnk = N ∩{D1, . . . ,Dm} and PC, PD ⊆ Data. E.g., if g is
“dC = dD” then we replace g with

∨
d∈Data hd where hd is (dC = d)∧ (dD = d). Next,

we replace 〈N,g〉 with the equivalent expression 〈N,h1〉 ∪ . . . ∪ 〈N,hr〉, construct the
circuits R〈N,hk〉 (see below) and combine them with the union-operator described above.
With the formula h as above, a circuit R〈N,h〉 for 〈N,h〉 is presented in Fig. 7, which we
now explain. For the Reo circuit R〈N,h〉 of a given 〈N,h〉, we need a pair of nodes C〈N,h〉
and C̃〈N,h〉 for every source node C ∈ Nsrc, and similarly, one node D〈N,h〉 for every sink
node D ∈ Nsnk, plus one other node E〈N,h〉. The same node C̄ must be used for all circuits
R〈M, f 〉 where C ∈ M and 〈M, f 〉 ∈ Atoms, while the nodes C〈N,h〉 and C̃〈N,h〉 are unique
for every atomic data expression 〈N,h〉 ∈ Atoms where C ∈ N.

We can think of the node E〈N,h〉 as a switch that synchronizes the data-flow in the
upper sub-circuit with the nodes D〈N,h〉, D, and C〈N,h〉, C̃〈N,h〉, C̄, and C for all source
nodes C ∈ Nsrc and all sink nodes D ∈ Nsnk. The synchronous channel from E〈N,h〉 to

248 F. Arbab et al.

A〈N,h〉 Ã〈N,h〉 B̃〈N,h〉 B〈N,h〉E〈N,h〉

C〈N,h〉

C̄ C
PC

A〈M, f 〉 Ã〈M, f 〉 B̃〈M, f 〉 B〈M, f 〉E〈M, f 〉

TC

C〈M, f 〉

EXR
Aα Ãα

B̃α Bα

D〈N,h〉

D

PD

Fig. 8. Reo circuit Rα for α = 〈N,h〉∪ 〈M, f 〉 where N = {C,D}, M = {C}

D〈N,h〉 and the PD-producer connecting D〈N,h〉 with D ensure that any data-flow at E〈N,h〉
is synchronized with the receipt of a value d ∈ PD at sink node D.

For the source nodes C, the situation is a bit more complicated because we must
ensure that C accepts an input value iff C synchronizes with exactly one of the nodes
E〈M, f 〉 where 〈M, f 〉 is a subexpression of α0 with C ∈ M. The use of perfect syn-
chronous channels is not appropriate because of the replicator semantics of the source
nodes. If C were connected with E〈N,h〉 via perfect synchronous channels only, then
data-flow would block when C appears in two or more atomic subexpressions of α0.
(Note that simultaneous data-flow at different nodes E〈N,h〉, E〈M, f 〉 is not possible.) For
this reason, we connect C with E〈N,h〉 via a filter channel, a lossy synchronous channel
and a synchronous drain through the nodes C〈N,h〉 and C̃〈N,h〉. These three channels (1)
allow C to pass values even when E〈N,h〉 is not available to synchronize with C, and (2)
force C to pass a value d ∈ PC when it synchronizes with E〈N,h〉. To prevent C from pass-
ing a value without synchronizing with one of the nodes E〈M, f 〉 where C ∈ M, we use a
synchronous channel connecting E〈N,h〉 with C̄ and a synchronous drain between C̄ and
C. These channels ensure that for C ∈ M, C is active exactly when data-flow occurs at
C̄ and exactly one of the nodes E〈M, f 〉.

A concrete example for the Reo-circuit which is constructed from the scheduled-
data expression α = 〈N,h〉 ∪ 〈M, f 〉 is shown in Fig. 8. Here, we assume that N =
{C,D}, M = {C} and h is (dC ∈ PC)∧ (dD ∈ PD) while f is dC ∈ TC. The proof for the
correctness of our synthesis algorithm is quite technical and omitted here.

Size of the constructed circuit. In the worst case, the treatment of the atoms 〈N,g〉
leads to an exponential blow-up (because every disjunctive normal form for g may be
exponentially longer than g). However, when we assume that all data constraints in α0

Synthesis of Reo Circuits For Implementation of Component-Connector 249

are given in canonical disjunctive normal form and when we measure the length of α0

as the total length of all data constraints occurring in (one of the atoms in) α0 then the
total number of channels in the constructed circuit is linear in the length of α0.

Preprocessing. We now explain how a preprocessing phase of the set Atoms can
simplify the construction of the circuits for the atomic subexpressions of α0. We first
look for pairs 〈C,D〉 with C ∈ {C1, . . . ,Cn}, D ∈ {D1, . . . ,Dm} such that for all 〈N,g〉 ∈
Atoms either {C,D}∩ N = /0 or {C,D} ⊆ N and g ≤ dC = dD. (≤ denotes logical im-
plication.) Then, we establish a synchronous channel with its source end on node C, its
sink end on node D and remove D in the sense that any 〈N,g〉 ∈ Atoms is replaced with
〈N \{D},g[dD/dC]〉 where g[dD/dC] means the data constraint resulting from g by the
syntactic replacement of any occurrence of dD with dC. Second, for any pair (Ci,Cj) of
source nodes such that for all 〈N,g〉 ∈ Atoms either {Ci,Cj}∩ N = /0 or {Ci,Cj} ⊆ N
and dCj does not occur in g, we establish a synchronous drain connecting Ci and Cj

and remove Cj from Atoms. The same technique can be applied to sink nodes Di, D j

such that for all 〈N,g〉 ∈ Atoms either {Di,D j}∩N = /0 or {Di,D j} ⊆ N and dD j does
not occur in g, where we generate a synchronous spout with its sink ends Di and D j

and remove D j. Finally, we look for sink nodes Di,D j such that 〈N,g〉 ∈ Atoms im-
plies {Di,D j}∩ N = /0 or {Di,D j} ⊆ N and g ≤ dDi = dD j and insert a new sink node
Di j with synchronous channels from Di j to Di and D j. We then remove Di, D j from
Atoms and treat Di j as a sink node. A similar transformation 〈Ci,Cj〉 � Ci j applies to
source nodes such that for all 〈N,g〉 ∈ Atoms either {Ci,Cj}∩ N = /0 or {Ci,Cj} ⊆ N
and g ≤ dCi = dCj . However, here we need a Reo connector that checks the equality of
two (synchronously) arriving input values.

Optimization. As in other algorithmic constructions, our resulting Reo circuits con-
tain certain redundancies which can be optimized away. We can detect and remove them
by applying circuit transformation rules that look for recognizable patterns of subcir-
cuits and replace them with their simpler equivalents. For instance, every occurrence
of a synchronous channel preceding or following any other channel X can be simpli-
fied to only X . In Fig. 8, there are multiple candidates that qualify for the application
of various circuit transformation rule. For example, we know that in Fig. 8, data-flow
can occur through only one of the top or bottom branches of the circuit (because there
is only one token at a time that passes through the entire circuit; the exclusive router;
and because the two branches are isolated from one another by drains). This makes the
right-hand-side FIFO1 channels on both top and bottom branches redundant.

6 Conclusion

The main contribution of the present paper is a general construction of a Reo circuit
from a constraint automaton. Although similar constructions exist in the classical area
of automata and digital circuits, the situation here is far more complicated because of
two major differences: (1) The behavior specified by constrained automata is generally
not functional (from input to output) but relational. (2) In a digital circuit and the Mealy
automaton describing it, behavior is always synchronous. In contrast, in Reo, behavior
can be synchronous, asynchronous, or (at different steps) a combination of the two. Be-

250 F. Arbab et al.

cause of in particular point 2, the classical construction of a circuit from an automaton
breaks down, and at forehand, it was by no means obvious how to tackle the problem
for Reo. We, therefore, see the algorithm described in the present paper as a major step
forward in the automatic synthesis of Reo component connector circuits.

From the theoretical point of view, the results established here and in [4] yield that
Reo connector circuits, constraint automata, and scheduled-data streams have the same
expressiveness and can be transformed into each other via algorithmic transformations.
This result can also be useful in practice as it allows to switch between these three
formalisms. For instance, it enables one to use automata-models within the Reo frame-
work to describe (and finally to synthesize) the interfaces of black-box components.
On the other hand, our algorithm also illustrates the expressive power of the channel
types presented in Fig. 1. (Note that our construction uses all of them, except for the
asynchronous spout.)

To some extent, our construction can also be modified to treat real-time constraints,
e.g., those formalized by timed scheduled-data expressions of the form α = β≤t stating
that data flow described by β must be completed within t time units. (See [3] for a
formal treatment of real-time within the Reo framework.). For this, we just connect the
node Ãα to the node B̃α via a synchronous drain and a timer channel with off-option,
i.e., a timer channel that allows the timer to be stopped at any point in time before the
expiration of its delay. In the picture below, this timer channel is depicted by an arrow
with a circle labeled with the delay t in its middle.

Aα Ãα B̃αRβ
BβAβ Bα

t

A compositional approach similar to the one we suggest here can also be used to provide
“Reo-implementations” for processes specified in terms of CCS- or CSP-like process al-
gebras. In fact, some of the typical operators are already included in regular expressions
(CCS-like nondeterminism corresponds to union, sequential composition to concatena-
tion, and ε to, e.g., the CCS-process nil). Parallel composition with CCS- or CSP-like
synchronization can be realized by establishing appropriate synchronous channels and
Reo’s join operator. A LOTOS-like disrupt operator P[>Q can be obtained using a Reo
component that realizes a switch; this switch is initially “on” and synchronizes with P
as long as it is “on” but is turned “off” by Q’s first activity (the inhibitor circuit in [2]
can be used to construct this switch from our set of primitive channels).

Although the construction presented here is not overly complicated, it can and
should still be simplified further and made more efficient. Parts of such considerations
have already been sketched in the present paper. In our future work, we will inves-
tigate further optimizations and the design of an alternative synthesis algorithm that
goes directly from automata to Reo circuits without having the regular expressions as
an intermediate step. Furthermore, dynamic reconfiguration of connector circuits is an
inherent aspect of Reo that we plan to cover in our future work.

Synthesis of Reo Circuits For Implementation of Component-Connector 251

References

1. F. Arbab. Abstract behavior types: A foundation model for components and their composi-
tion. In [?], pages 33–70, 2003.

2. F. Arbab. Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science, 14(3):1–38, 2004.

3. F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and temporal logics for timed compo-
nent connectors. In Proc. SEFM’04. IEEE CS Press, 2004.

4. F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani. Modeling component connectors in reo
by constraint automata. In FOCLASA’03, volume 97 of ENTCS, pages 25–41, 2004. Full
version see http://web.informatik.uni-bonn.de/I/baier/publikationen.html.

5. F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component connectors. In Re-
cent Trends in Algebraic Development Techniques, Proc. 16th Int. Workshop on Algebraic
Development Techniques (WADT 2002), volume 2755 of LNCS, pages 35–56, 2003.

6. P.C. Attie and E.A. Emerson. Synthesis of concurrent systems with many similar sequential
processes. In Proc. POPL, ACM Press, pages 191–201, 1989.

7. M. Broy and K. Stolen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces and Refinement. Springer-Verlag, 2000.

8. A. Church. Logic, arithmetic and automata. In Proc. Int. Congress of Mathematicians, pages
23–35. Institut Mittag-Leffler, 1962.

9. CIM. http://www.almende.com/cim/.
10. D. Clarke, D. Costa, and F. Arbab. Modeling coordination in biological systems. In Proc. of

the Int. Symposium on Leveraging Applications of Formal Methods (ISoLA 2004), 2004.
11. N. Diakov and F. Arbab. Compositional construction of web services using Reo. In Proc.

International Workshop on Web Services: Modeling, Architecture and Infrastructure (ICEIS
2004), Porto, Portugal, April 13-14, 2004.

12. E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize synchronous skele-
ton. Science of Programming, 2:241–266, 1982.

13. T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc. 30th Int.
Colloquium on Automata, Languages, and Programming (ICALP), volume 2719 of LNCS,
pages 886–902, 2003.

14. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Language,
and Computation. Addison–Wesley, 2nd edition edition, 2001.

15. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-
fications. ACM Transactions on Programming Languages and Systems, 6:68–93, 1984.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th Symposium
on Principles of Programming Languages, pages 179–190. ACM Press, 1989.

17. J.J.M.M. Rutten. Component connectors. In [?], chapter 5, pages 73–87. 2004.
18. W. Thomas. On the synthesis of strategies in infinite games. In Proc. of the 12th Annual

Symp. on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages 1–13, 1995.
19. M. Vardi. An automata-theoretic approach to fair realizability and synthesis. In Proc. CAV,

volume 939 of LNCS, pages 267–278, 1995.
20. Z. Zlatev, N. Diakov, and S. Pokraev. Construction of negotiation protocols for E-Commerce

applications. ACM SIGecom Exchanges, 5(2):11–22, November 2004.

	Introduction
	A Reo Primer
	Constraint Automata
	Scheduled-Data Expressions
	From Scheduled-Data Expressions to Reo
	Conclusion

