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ABSTRACT

Due to the rapid growth of electronic environments (such as the Internet) much research is currently being
performed on autonomous trading mechanisms. This report contains an overview of the current literature
on negotiations in the fields of game theory and artificial intelligence (Al). Game theorists have successfully
developed and analyzed a variety of bargaining models in the past decades. We give an extensive overview
of this theoretical work. In particular, research performed in the fields of cooperative and non-cooperative
bargaining, bargaining with incomplete information, and bargaining over multiple issues is evaluated. The use
and shortcomings of game-theoretical concepts in practical applications is discussed.

Simplifying assumptions frequently made in game-theoretical analyses, such as assumptions of perfect ra-
tionality and common knowledge, do not need to be made if the behavior of boundedly-rational negotiating
agents is modeled directly, for instance using techniques borrowed from the field of Al. We show how different
Al-techniques, such as decision trees, Q-learning, evolutionary algorithms, and Bayesian beliefs, can be used
to develop a negotiation environment consisting of intelligent agents. These agents are able to adapt their
negotiation strategies to changing user preferences and opponents. A survey of state-of-the art applications
using Al-techniques is given in this report.

The main conclusion from this survey is that combining techniques and ideas from game theory and Al will
make it possible to create robust and intelligent negotiation systems in the near future.
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1. INTRODUCTION
This report contains an overview of approaches and techniques concerned with bargaining. We here
focus on the large body of literature that has been published in the fields of economics (in particular
game theory) and artificial intelligence (AI). To give a brief impression of the rapid developments
in this field, we first highlight some important breakthroughs in economic bargaining theory in this
introduction. More details, extensions, and analyses can then be found in Section 2.

Perhaps surprisingly, the bargaining problem has challenged economists for decades. Yet the bar-
gaining problem is stated very easily [35]:

Two individuals have before them several possible contractual agreements. Both have
interests in reaching agreement but their interests are not entirely identical. What “will
be” the agreed contract, assuming that both parties behave rationally?

Before the path-breaking work of Nash [24] and, much later, Rubinstein [35] the bargaining problem
was considered to be indeterminate. For example, in their influential work Von Neumann and Mor-
genstern [46] argued that the most one can say is that the agreed contract will lie in the so-called



“bargaining set” (i.e., it is no worse than disagreement and there is no agreement that both parties
would prefer). But because this bargaining set consists in general of an infinite number of different
agreements this requirement does not yield a unique bargaining solution. A unique solution can be
found, however, if the agreed contract satisfies additional axioms such as those proposed by Nash [24].
Because one can argue about which axioms are “reasonable” and which are not, Nash suggested to
complement this axiomatic approach with a strategic game. This route was followed by Rubinstein
[35] who proved that an important bargaining game (the “alternating-offers” game) has a unique solu-
tion. Binmore [5] then connected the fields of axiomatic and strategic bargaining by proving that the
solution of Rubinstein’s bargaining model coincides with the Nash bargaining solution under special
circumstances.

Binmore et al. observe in a more recent paper [6] that researchers from outside the economic
community are becoming more and more interested in game-theoretic work on bargaining. Interest in
bargaining is especially surging in the artificial intelligence community, see the overview in Section 3
of this report.

Game theory frequently makes simplifying assumptions to facilitate the mathematical analysis.
Common assumptions are for instance: (1) complete knowledge of the circumstances in which the
game is played and (2) full rationality of the players. The first assumption implies that the rules of
the game and the preferences and beliefs of the players are “common knowledge”.! Game theorists
traditionally model incomplete information by specifying a limited number of player “types”. Each
type is then uniquely determined by a set of preferences and beliefs. Players are not completely certain
about the exact type of their opponent. However, the probability that an opponent is of a certain type
is, again, common knowledge for all players. In this manner, a game of incomplete information can
be transformed in a game of “imperfect” information? (see also Section 3.3).

The second assumption relates to the need for common knowledge on how players reason. It is
assumed that players maximize their expected payoffs given their beliefs. Players have infinite com-
putational capacity to pursue statements like “if I think that he thinks that I think...” ad infinitum.
Furthermore, players are assumed to have a perfect memory.> These assumptions limit the practical
applicability of game-theoretic results. In the field of AI, however, assumptions like complete knowl-
edge or full rationality are not necessary because the behavior of individual agents can be modeled
directly. This gives the AI approach an important advantage over more rigorous (but at the same
time more simplified) game-theoretical models.

Researchers in the field of Al are currently developing software agents which should be able (in
the near future) to negotiate in an intelligent way on behalf of their users. A survey of the potential
of automated negotiation is given in [47, Ch. 9]. A well-known example is the agent-based heating
system of the Xerox company. In this climate control system each agent controls an office thermostat
and the allocation of resources is market based. Another example of negotiating agents is given in [7].
This paper describes a system in which a utility agent (acting on behalf of an electricity company) is
negotiating with consumer agents to prevent excessive peaks in the demand for electricity.

An important restriction of the above systems is that they are closed and that agents behave and
interact in a predetermined way. That is, they typically consist of a “fixed” collection of “inflexible”
agents. In future applications for e-commerce, multi-agent systems will need to be much more open-
ended and dynamic, especially for trading, brokering, and profiling applications. In particular, it
is important for the negotiating agents to be able to adapt their strategies to deal with changing
opponents, changing topics and concerns, and changing user preferences. This should lead to much
more advanced and universal systems.

LCommon knowledge means that the players know what the other players know, etc., in an infinite regress.

2A game is said to have perfect information if (i) there are no simultaneous moves and (ii) at each decision point it
is known which choices have previously been made [44, Ch. 1].

3TLately, much research in game theory focuses on the field of “bounded” rationality, in which players have limited
computational power and/or limited hindsight. An overview of recent work in this field can be found in [37]. Binmore
also gives a short discussion of this topic in [3, pp. 478-488].



Nevertheless, due to this rapidly increasing complexity, the connection between the AT approach and
a game-theoretic analysis remains important. Game theory may aid in the difficult task of choosing
a suitable bargaining protocol [6]. Tools and techniques from AT can be used to develop software
applications and bargaining protocols which are currently beyond the reach of classical game theory.

2. GAME-THEORETIC APPROACHES TO BARGAINING

Traditionally, game theory can be divided into two branches: cooperative and non-cooperative game
theory. Cooperative game theory abstracts away from specific rules of a game and is mainly concerned
with finding a solution given a set of possible outcomes. A topic like coalition forming is typically
analyzed using cooperative game theory. Often, in real life, companies can gain profits by working
together, for example by securing a larger market share or by reducing direct competition with the
competitors. In such games, a surplus is created when two or more players cooperate and form
a coalition. Cooperative game theory can then determine how the surplus is to be divided, given
a coalition and a set of assumptions (called “axioms”). Likewise, cooperative bargaining theory
determines how the surplus is to be divided which results from an agreement.

Non-cooperative game theory, on the other hand, is concerned with specific games with a well defined
set of rules and game strategies. All strategies and rules are known beforehand by the players. Non-
cooperative game theory uses the notion of an equilibrium strategy to determine “rational” outcomes
of a game. Numerous equilibrium concepts (and subsequent refinements) have been proposed in the
literature (see [44] for an overview). Some widely-used concepts are “dominant” strategies, “Nash”
equilibria and “subgame perfect” equilibria. A dominant strategy is optimal in all circumstances, that
is, no matter what the strategies of the other players are. This is obviously a very strong notion of an
equilibrium strategy. A slightly weaker, but still very powerful, equilibrium concept is the so-called
Nash equilibrium [25, 26]. The strategies chosen by all players are said to be in Nash equilibrium if
no player can benefit by unilaterally changing his strategy. Nash proved that every finite game has at
least one equilibrium point (in pure or mixed strategies) [25, 26]. A important refinement of a Nash
equilibrium for extensive-form games (i.e., games with a tree structure) is Selten’s subgame-perfect
equilibrium [39, 40]. In subgame-perfect equilibrium the strategies for each subgame of the game tree
constitute a Nash equilibrium.

An overview of bargaining literature from the field of cooperative game theory will be given in
Section 2.1. In Section 2.2 several non-cooperative bargaining games are discussed. Particular atten-
tion is paid to the most important bargaining protocol: the “alternating-offers” game. In Section 2.2
bargaining over a single issue is assumed. Section 2.3 covers work on multiple-issue negotiations.

As we mentioned before, traditional game theory assumes complete information, implying that the
player’s preferences and beliefs are common knowledge. However, lately many researchers in game
theory have focussed on the consequences of players having private information. Among other things,
incomplete information could explain why inefficient deals are reached or why no deal is reached
at all. For instance, the occurrence of strikes and bargaining impasses, but also the occurrence of
delays in negotiations can theoretically be addressed when complete information is no longer assumed.
Literature related to this topic is discussed in Section 2.4.

2.1 Cooperative bargaining theory
Cooperative game theory considers the space of possible outcomes of a game, without specifying the
game itself in detail. In case of bargaining, the outcomes are often denoted in terms of utilities
[3]. In case of two-player games, the outcomes are then represented by utility pairs. Cooperative
bargaining theory is concerned with the question of which outcome will eventually prevail, given the
set of all possible utility pairs. A particular set of possible outcomes is also referred to as a “bargaining
problem”.

A function which maps a bargaining problem to a single outcome is called a “solution concept”.
Usually, a solution concept is only valid for a certain subset of all possible bargaining problems. For
instance, the first and most famous solution concept, the Nash bargaining solution [24] only applies



to convex and compact bargaining sets (see also [3, pp. 180-181]). Ouly if these requirements are
satisfied the bargaining problem can properly be called a Nash bargaining problem.

An alternative bargaining solution has been proposed by Kalai and Smorodinsky [15]. Their ap-
proach is discussed below. Both the Nash and the Kalai and Smorodinsky bargaining solutions are
invariant with respect to the calibration of the players’ utility scales. The “utilitarian” solution con-
cept differs in that respect and does actually depend on how the functions are scaled. For this reason,
its application is limited to those situations where inter-personal utility comparison makes any sense.
Cooperative theories of bargaining are discussed in more detail in [34].

The Nash bargaining solution Nash proposed four properties, now called the “Nash axioms”, which
should be satisfied by rational bargainers [24],[3, p. 184]:

1. The final outcome should not depend on how the players’ utility scales are calibrated. This
means the following. A utility function specifies a player’s preferences. However, different
utility functions can be used to model the same preferences. Specifically, any strictly increasing
affine transformation of a utility function models the same preferences as the original function,
and should therefore yield the same outcome.

2. The agreed payoff pair should always be individually rational? and Pareto-efficient?.

3. The outcome should be independent of irrelevant alternatives. Stated otherwise, if the players
sometimes agree on the utility pair s when ¢ is also a feasible agreement®, they never agree on t
when s is a feasible agreement.

4. In symmetric situations, both players get the same.

The solution which satisfies these four properties is characterized by the payoff pair s = (z1, z2) which
maximizes the so-called Nash product (z1 — di)(22 — dz2), where d; and dy are player 1’s and player
2’s outcomes in case of a disagreement. Nash proved that this is the only solution which satisfies all
four axioms [24]. Given a Nash bargaining problem where the set of individually rational agreements
is not empty, the Nash bargaining solution then leads to a unique outcome. Figure 1 illustrates how
to construct the Nash bargaining solution for a given bargaining problem.

Due to the fourth axiom, both players are treated symmetrically if the bargaining problem is
symmetric as well. In other words, if the players’ labels are reversed, each one will still receive the
same payoff. A more general solution attributes so-called “bargaining powers” « and 3 to player 1
and player 2, respectively. In this generalized or asymmetric Nash bargaining solution, the fourth
axiom is abandoned and the bargaining solution comes to depend on the bargaining powers of the two
players.” The generalized Nash bargaining solution corresponding to the bargaining powers a and (3
can be characterized as above as the pair s which maximizes the product (z1 — d;)*(z2 — d2)? [3, p.
189].

The Kalai-Smorodinsky bargaining solution — The third of the Nash axioms (independence of irrelevant
alternatives) has been the source of great controversy (follow the discussion in [18]). Kalai and
Smorodinsky therefore proposed an alternative to this axiom, which they refer to as the “axiom
of monotonicity” [15]. For a set S of individually-rational and Pareto-efficient points, let m;(S) =
maz{s; | s € S} be player i’s maximum feasible utility, for ¢« = 1,2. The Kalai-Smorodinsky solution

4An agreement is individually rational if it assigns each player a utility that is at least as large as a player can
guarantee for himself in the absence of an agreement [3, p. 178].

5An agreement is Pareto-efficient if no player can gain without causing a loss for the other player [3, p. 177].

6That is, within the set of possible agreements.

7"What these bargaining powers represent depends on the actual (non-cooperative) game played. For example, in
case of negotiating companies the bargaining powers could be determined by the strength of their respective market
positions. It should be clear however, that the bargaining powers have nothing to do with the bargaining skills of the
players, since perfect rationality is assumed.
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Figure 1: Construction of the Nash bargaining solution. This figure shows the Pareto-efficient frontier
(denoted by the solid line) and the Nash bargaining solution for a specific bargaining problem. The
bargaining problem is defined by the set of feasible utility pairs (denoted by the grey area) and
the disagreement point d which specifies the players’ payoffs in case of a disagreement. To find the
(symmetric) Nash bargaining solution, one needs to draw a supporting line on the Pareto-efficient
frontier such that the Nash bargaining solution is halfway between the points r and ¢. The points r
and t are located on respectively the horizontal and the vertical lines drawn from the disagreement
point d.

then selects the maximum element in S on the line that joins the disagreement point (d;, ds) with the
point (m1(S), m2(S)). An example is given in figure 2.
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Figure 2: Construction of the Kalai-Smorodinsky solution. mj; and my are the maximum feasible
utilities for players 1 and 2, respectively. Point £ is the unique solution which satisfies the four axioms
proposed by Kalai and Smorodinsky [15].



Utilitarianism A utilitarian policy in philosophy is one which prefers an outcome which maximizes
the total welfare of the individuals in a society [23]. Any bargaining solution which maximizes the
sum of utilities is therefore called a utilitarian solution concept. Stated less formally, the utilitarian
principle asserts that “you should do something for me if it will hurt you less than it will help me”.
Clearly, a utilitarian solution concept assumes that interpersonal utility comparisons are possible.
Therefore, Nash’s first axiom (independence of utility calibrations) no longer holds in utilitarian
models.?

Conclusions  Apparently, many different types of solutions to the bargaining problem exist in co-
operative game theory. The choice of a specific solution is of course based on norms existing in a
society, or, more specifically, on which axioms seem to be “reasonable” in a specific bargaining con-
text. Certain outcomes might be for instance be considered as “unfair”. An example is given in [32,
pp. 235-250].

Additionally, it is important to consider for which classes of non-cooperative games the solution
concepts from cooperative game theory are appropriate. For instance, if no non-cooperative game
can be found which results in a solution specified by cooperative game theory, then the results from
cooperative game theory have little bearing. Fortunately, such a connection between cooperative and
non-cooperative game theory has been observed under special circumstances [5] (more details are given
in Section 2.2).

2.2 Bargaining over a single issue

Four different negotiation games or “protocols” are described in this section. These protocols can be
used by two bargainers to divide a given bargaining “surplus”, that is, the total profit resulting when
the players reach an agreement. Without loss of generality, we assume that the bargaining surplus is
of size unity in the remainder of this report.

The following protocols are considered below: (1) the Nash demand game, (2) the ultimatum game,
(3) the alternating-offers game and (4) the monotonic concession protocol. The first three games are
well-known and widely-used. The fourth game is described in [33] and is an attempt to model a more
realistic negotiation scenario. However, in all games described here analytical solutions are obtained
using the strong assumption of common knowledge. The extrapolation of results obtained here to
real-world cases is therefore a non-trivial step.

The protocols described in this section have been applied mainly to evaluate negotiations over a
single issue. In real life, this issue is often the price of a good to be negotiated. Although this keeps
matters simple, important value-added services such as delivery time, warranty or service are left out.
Both the supplier and the consumer could for instance benefit if negotiations involve multiple issues.
Moreover, multiple-issue negotiations can be less competitive because solutions can be sought which
satisfy both parties. Multiple-issue negotiations are studied in more detail in Section 2.3.

The Nash demand game Both players simultaneously demand a certain fraction of the bargaining
surplus in this game, without any knowledge of the other player’s demand [3, pp. 299-304]. In case the
sum of demands exceeds the surplus, both players only receive their disagreement payoff. Otherwise,
the demands are said to be compatible, and both players get what they requested. This game has
an infinite number of Nash equilibria: all deals which are Pareto-efficient, but also deals where both
players receive their disagreement payoff. For example, if both players ask more than the entire
surplus, no player could ever gain by unilaterally changing his strategy.

The concept of a Nash equilibrium thus places few restrictions on the nature of the outcome. Nash
therefore suggested a refinement for this game which does result in a unique solution. This refinement
of the demand game is called the “perturbed” demand game [29, pp. 77-81]. In this perturbed game
the players are completely certain about which outcomes are within the bargaining set (i.e., the set
of compatible demands) and which outcomes are not. When the degree of uncertainty approaches

&Note that the Pareto-efficiency axiom still holds. The other axioms depend on the specific solution concept.



zero, the Nash equilibrium of the perturbed game approaches the Nash bargaining solution of the
regular demand game (without uncertainty).” The reader is referred to [44] for technical details on
this subject. A more introductory overview is given by Binmore [3].

The ultimatum game  Playing Nash’s demand game, both players could easily receive nothing, or
it could occur that some of the surplus is “thrown away”. Players would do better by choosing a
somewhat less competitive game. If they are unable to reach an agreement using this alternative
game, the demand game still remains an option.

A very simple alternative is the so-called “ultimatum” game. In this game, one of the players
proposes a split of the surplus and the other player has only two options: accept or refuse. In case of
a refusal, both players get nothing (or the demand game is played). Although the game again has an
infinite number of Nash equilibria, it has only one subgame perfect equilibrium (in case the bargaining
surplus can be divided with arbitrary precision) where the first player demands the whole surplus and
the second player accepts this deal [3, pp. 197-200].

The alternating-offers game  Basically a multiple-stage extension of the ultimatum game, the
“alternating-offers” game is probably the most elegant bargaining model. As in the ultimatum game,
player 1 starts by offering a fraction z of the surplus to player 2. If player 2 accepts player 1’s offer, he
receives z and player 1 receives 1 — z. Otherwise, player 2 needs to make a counter offer in the next
round, which player 1 then accepts or rejects (sending the game to the next round). This process is
repeated until one of the players agrees or until a finite deadline is reached.

Bargaining over a single issue in an alternating fashion has been pioneered by Ingolf Stahl [42]. A
taxonomy and survey of economic literature on bargaining before 1972 is given in this reference. Stahl
analyzes bargaining games with a finite number of alternatives. Both games of finite and of infinite
length are studied, but he primarily evaluates games of a finite length. Stahl uses an assumption of
“good-faith bargaining” to simplify the theoretical analysis. Good-faith bargaining prevents players
from increasing their demands during play. He then identifies optimal strategies for rational players
with perfect information by starting at the last stage of the game and then inductively working
backwards until the beginning of play. This procedure yields those equilibria which can be found with
dynamic programming methods.

A straightforward dynamic programming approach can fail in case of imperfect information [44,
Ch. 1]. Sensible strategies can then be found by requiring that each player’s optimal strategy for the
entire game also prescribes an optimal strategy in every subgame. As mentioned before, this concept
of a subgame-perfect equilibrium (SPE) is due to Selten [39, 40]. Rubinstein [35] successfully applied
this equilibrium concept to identify a unique solution in his variant of the alternating-offers game.
Rubinstein’s game [35] has an infinite length and there is a continuum of alternatives. To simplify the
analysis, Rubinstein made several assumptions with regard to the players’ preferences. An important
difference with Stahl’s model is that time preferences are assumed to be stationary (this means that
the preferences of getting a part z of the surplus at time ¢ over getting y at ¢t + 1 is independent of ¢).

Rubinstein analyzes two specific stationary models: one in which each player has a fixed bargaining
cost for each period (¢; and ¢;) and one in which each player has a fixed discounting factor (4; and
d2). These discount factors model how impatient the player is [3, p. 202]. Player ¢ ’s utility for getting
a fraction z of the surplus at time ¢ is equal to z(d;)t. If the discount factor is smaller than 1, a deal
is therefore worth less if the agreement is reached in the future than if a deal is reached immediately.

Using stationarity and other assumptions, Rubinstein first demonstrated that the Nash equilibrium
concept is too weak to identify a unique solution by proving that every partitioning of the surplus
can be supported as the outcome of Nash equilibrium play. To overcome this difficulty, Rubinstein
then applied the concept of a SPE and proved that there exists a unique SPE in the alternating-offers
bargaining model. For example, if both players have a fixed discounting factor (§; and ds) the only

9Note that only the Nash equilibria which result in solutions within the bargaining set are considered. Nash equilibria
in which no agreement is reached still remain [29, p.79].



SPE is one in which player 1 gets (1 — d2)/(1 — 162) and player 2 the remainder (of a surplus of
size 1). Furthermore, if both players use their SPE strategy, agreement will be reached in the first
round of the game. Notice that Rubinstein’s proof assumes that both players have perfect information
about the other player’s preferences (i.e., their bargaining cost or discount factor). Bargaining with
imperfect information (i.e., where uncertainty plays a crucial role) is discussed further in Section 2.4.

Rubinstein’s paper has been very influential in bargaining theory. At the moment, a vast body of
literature exists on infinite-horizon games. An overview is given in [29, 22]. Many pointers to the
literature are given in these references. We will conclude this section by discussing a few key papers
in this field.

An particularly important paper is [5]. In this paper a relation between the SPE outcome of the
alternating-offers game and the Nash bargaining solution is identified in case of weak player preferences
(e.g., discount factors close to unity or small time intervals between rounds). This establishes a
link between non-cooperative and cooperative bargaining theory and justifies the use of the Nash
bargaining solution to resolve negotiation problems (at least in case of complete information).

Van Damme et al. [45] have investigated the role of a smallest monetary unit (i.e., a finite number
of alternatives) in the alternating-offers game with payoff discounting. They show that in case of a
finite number of alternatives, any partition of the surplus can be supported as the result of a subgame-
perfect equilibrium if the time interval between successive rounds becomes very small. This means
that Rubinstein’s assumption of a continuous spectrum of bids is essential in deriving a unique solution
of the alternating-offers game under these conditions.

Recent theoretical work by Binmore et al. [4] examines an evolutionary variant of Rubinstein’s game.
In this paper the agents are modeled as (boundedly-rational) automata instead of perfectly-rational
bargainers. In particular, the bargaining agents do not know the other agents’ preferences. Binmore
et al. characterize so-called modified evolutionary stable strategies (MESSes). A MESS modifies
Maynard Smith’s concept of a neutrally stable strategy [41] by favoring a more simple strategy over a
more complex one in case of equal payoffs. Binmore et al. show theoretically that if both agents use
a MESS, this constitutes a Nash equilibrium in which immediate agreement is reached. Furthermore,
each agent’s share of the surplus is bounded between the shares received by the two agents in the
SPE of the infinite-horizon game studied by Rubinstein. These bounds collapse on the SPE partitions
when the breakdown probability becomes very small, or when the players’ discount factors (modeling
their time preferences) become large.

Monotonic concession protocol A more restricted protocol, compared to the alternating-offers game,
is described in [33]. In this “monotonic concession” protocol the two players announce their proposals
simultaneously. If the offers of both agents match or exceed the other agent’s demand, an agreement
is reached. A coin is tossed to choose one of the offers in case they are dissimilar.

If no agreement is reached, the players need to make new offers in the next round. The offers need
to be monotonic, that is, the players are not allowed to make offers which have a lower utility for
their counter player compared to the last offer. Hence, a player can either make the same offer (to
stand firm) or concede. Negotiations end if both agents stand firm in the same round. The players
receive their disagreement payoffs in this case. Because each round at least one of the players has to
make a concession (or a disagreement occurs), the protocol has a finite execution time if the minimum
concession per round is fixed and larger than zero.

Note that in order to make a (monotonic) concession possible, a player needs to have some knowledge
about the other players’ preferences. This knowledge is crucial when several issues are negotiated at
the same time. In this case not only the “sign” of the utility function, but also the relative importance
of the issues becomes important.

Rosenschein and Zlotkin discuss which kinds of strategies are stable and efficient when using this
protocol (in negotiations over a single issue). A strategy pair is efficient in this case if an agreement
is always reached. Stability is defined using the notion of a symmetric Nash equilibrium.'® Note

10A strategy s constitutes a symmetric Nash equilibrium if player 1 can do no better than playing s, given that player



that a strategy s in which both players make a concession in the same round is not stable: one of
the players could do better by standing firm. On the other hand, a strategy where a player tosses a
coin to determine whether to concede or stand still is not efficient (nor stable): a disagreement will
occur with a probability of one fourth. The interested reader is referred to [33] for more details on
the characteristics of this mechanism.

2.3 Bargaining over multiple issues

The above situations can be described as negotiations about how to divide a surplus. This means
that the negotiations are distributive: a gain for one player always creates a loss for the other player.
These kinds of negotiations are also referred to as “competitive” [13]. When more than a single issue
is involved, and players attach different importance to these issues, tradeoffs become an option and
negotiations may become “integrative”. The latter kind of negotiations is the main topic of this
section. Results from cooperative game theory are discussed first, followed by a overview of results
from non-cooperative game theory.

Cooperative game theory An additive scoring system or a multi-attribute utility (MAUT) function
can be used to represent the relationships or trade-offs between the issues if several issues are in-
volved.'! However, these methods are appropriate only if the issues are preferentially independent,
that is, if the contribution of one issue is independent of the values of the other issues.

Once the preferences are mapped, for instance onto a MAUT function, the bargaining set can
be determined. The main goal is again to reach a Pareto-efficient outcome. Previously introduced
solution concepts such as the Nash bargaining solution or the Kalai-Smorodinsky solution can be used
for this purpose. Several practical considerations (concerning for example fairness of the outcome)
and some instructive real-world examples are given by Raiffa in [32].

Non-cooperative game theory  Four different bargaining procedures can be distinguished for multiple-
issue bargaining [31] (see figure 3). In case of “global” or simultaneous bargaining all issues are
negotiated at once. The second procedure is called “separate” bargaining. In this protocol the issues
are negotiated independently. The final two procedures fall under the header of sequential bargaining
and are distinguished by their “rules of implementation”. These rules specify when the players can
start enjoying the benefits of the issues which have been agreed on.'? Three possibilities are considered
in [11]. Here, however, we will only mention the most important two. Using the so-called “independent
implementation” rule, an agreement on an individual issue takes effect immediately, that is, the agreed
upon issues are no longer discounted. In the “simultaneous implementation” on the other hand, the
players have to wait until agreement is reached on all issues before they can enjoy the benefits of it.
The time it takes to agree on the remaining issues also influences the profits gained on the already
agreed upon issues.

bargaining procedures

%\

global Separate sequential

/\

simultaneousimplementation  independent implementation

Figure 3: Four different bargaining procedures used in multiple-issue bargaining [31].

2 also uses s.
1See [32, pp.154-155] for a discussion of the differences between these methods.
12This is relevant in case the payoff is discounted in the course of time.
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When bargaining is sequential an agenda needs to be determined to set the order in which the issues
will be negotiated. Agenda setting is of course only relevant if the issues are of different importance.
Another concern is whether the players attach the same importance to each issue or whether different
players have different evaluations regarding the importance of the issues. The latter is the most
interesting case since this allows for integrative negotiations. Unfortunately, however, only a limited
literature exists on this topic in game theory. Usually, either the issues are of equal importance (as in
[1]) or the players have identical preferences (as in [8]). In [31] the assumption is made that preferences
are additive over issues, implying that the multi-issue bargaining problem is equal to the sum of the
bargaining problems over the separate issues.

One of the few papers in game theory on integrative bargaining is [11]. Fershtman considers sequen-
tial bargaining over two issues. He states that, when using Rubinstein’s alternating-offers protocol for
each issue in a sequential order, each player prefers an agenda in which the first issue to bargain on
is the one which is the least important for him but the most important for his opponent. Notably, it
is shown in [11] that the subgame-perfect equilibrium outcome for this problem does not need to be
Pareto-efficient.

2.4 Bargaining with incomplete information

Private information such as reservation prices (i.e. limit values on what the players find acceptable),
preferences amongst issues, attitudes towards risk or time preferences are often hidden from the
opponent in real-life negotiations. In bargaining, for example, it might be beneficial to be dishonest
about one’s attitudes towards risk in order get a greater share of the surplus (as would be the case in
Rubinstein’s alternating-offers game). Sometimes, however, a mechanism (or protocol) can be designed
which gives agents a compelling incentive to be honest to the opponent. Such mechanisms are called
“incentive compatible” and are examined in [33]. In an incentive-compatible protocol the agents can
simultaneously declare their private information before the bargaining starts. The negotiations then
proceed as a game of complete information.

The Vickrey auction [3, pp. 525-526] is an example of such an incentive-compatible mechanism.
Unfortunately, however, only few games have this property. Therefore, it is necessary to analyze games
with incomplete information. As mentioned in the introduction, games theory frequently assumes that
the players have complete information. However, in order to analyze situations in which players are
unsure of the opponent’s type, the notion of imperfect information needs to be introduced.

Imperfect information enables us to address important issues as reputation building, signaling and
self-selection mechanisms [36]. For example, the fact that players are unsure of the other player’s
type might explain the occurrence of (inefficient) delays in reaching an agreement [29, Ch. 5]. Using
such inefficient strategies may be the only way to signal for instance one’s strength (an example is
the outbreak of strikes during wage bargaining situations). Any utterance which is not backed up by
actions can be considered as being cheap talk.'® Delays may therefore be required to convey private
information credible [16].

In a wage negotiation problem, for example, the union is often unsure about the actual value of its
workers for a firm. If this value is high, the firm will be more eager to sign an agreement. In case of a
low value however, the firm will behave credible by bearing the costs of a strike [16]. A firm could try
to “bluft” by ignoring a strike even in case of a high valuation, and use this strategy to signal a lower
valuation of the union workers than actually is the case. However, such a strategy can potentially be
very harmful.

An overview of bargaining with one-sided incomplete information is given in [29, pp. 118-120].
More introductory texts on bargaining with private information can be found in [16] and [3, Ch. 11].

13In non-cooperative games, nothing anyone says constrains its future behavior. If a player chooses to honor an
agreement or threat that has been made, this will only be because it is optimal to do so.
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3. NEGOTIATION AND LEARNING

Several aspects of learning are potentially important during negotiation processes. First, a bargaining
agent needs to have a strategy which specifies his actions during the course of play. On the basis of the
agent’s experiences in previous bargaining games, he can learn that it might be profitable to adjust his
strategy in order to achieve better deals. Second, it might even be useful to update a strategy during
play. This may be the case if the agent is initially unsure about the “type” of his opponent. After
playing a bargaining game for a number of rounds, the agent may form a belief about his opponent’s
type and fine-tune his behavior accordingly. Third, in automated negotiation settings (where agents
bargain on behalf of their owners) an agent might need to learn the preferences of his owner first. In
this report attention is focussed on the first two kinds of learning.

This section is organized as follows. First, several Al learning techniques are introduced briefly
in Section 3.1. Next, Section 3.2 shows how efficient bargaining strategies can be obtained using
evolutionary algorithms (EAs). Section 3.3 approaches learning during the negotiation process using
Bayesian beliefs. Section 3.4 considers an alternative approach by viewing negotiations as a constraint
satisfaction problem. Here, the emphasis lies more on finding acceptable rather than optimal solutions.

3.1 Learning methods
Several learning methods developed in the field of AI are introduced in this section: decision trees,
Q-learning, evolutionary techniques and Bayesian beliefs. This list is by no means exhaustive but
gives an good impression of the different types of methods that can be relevant in this context.

Two important kinds of learning methods are studied in more detail in subsequent sections. Evo-
lutionary approaches are discussed in Section 3.2. Bayesian beliefs are considered further in Section
3.3.

Decision trees  Decision tree induction is one of the simplest supervised learning algorithms [38, Ch.
18]. The inputs of a decision tree are values for a set of attributes (such as the current income of a
customer in a bank). The output of a decision tree is usually an action or a decision, usually in the
form of a “yes/no” classification (such as, “grant or deny a loan”). Each node in the tree contains an
attribute, and the arcs represent different ranges of the value domain for the attribute. Learning is
done by adapting the tree in such a way that it remains consistent with the examples presented. The
examples contain both the input and the desired output. When a negative example is presented (i.e.,
when the desired output is not obtained) a node is split and a new attribute is added to the tree. Due
to noise negative examples could remain even if all attributes are already used. A simple solution is
then to use a majority vote.

In general, a set of training examples can agree with many different decision trees, having a different
degree of complexity. Using “Ockham’s razor”, smaller (i.e., simpler) decision trees are often preferred
over larger ones. Unfortunately, the problem of finding the smallest decision tree is an intractable
problem [38, p. 535].

Many different learning algorithms have been proposed for solving problems such as efficiency,
noise and overtraining. Examples include ID3, C4.5, EPAM, CLS and genetic programming. For an
overview see [38, pp. 559-560].

Q-Learning An agent receives feedback each time it performs an action in case of supervised learning.
However, in many practical cases feedback is only received at the end of a (long) sequence of actions.
A good example is a game like chess: only at the end of play the players know with certainty how
well their strategy performs. In learning models like Q-learning, agents also try to evaluate the effect
of intermediate actions. Q-learning is a reinforcement learning algorithm [38, p. 528] which learns an
action-value function yielding the ezpected utility of a given action in a given state [38, p. 599].

This algorithm maintains a list of so-called Q-values @)(a,7), which denote the expected utility of
performing an action a at state . The action which maximizes the expected utility is selected, and
the system moves to a new state j. The Q-value is then updated depending on the Q-value of the
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new state and the received reward (if available). The following equation can be used [38, p. 613] for
updating the Q-value in case of a transition from state ¢ to j by taking action a:

Q(aai) <~ Q(a,z) + Oé(R(Z) + HL‘?‘XQ(alvj) - Q(aai))a (31)

where R(i) is the actual reward received in state i and « is the learning rate. The value max, Q(a’, j)
represents the expected utility of state j. For example, if the current state ¢ has a relatively low
expected utility and the next state j has a high expected utility, the Q-value Q(a,i) is updated in
such a way that the difference between these states is reduced. In this way rewards which are given
at the terminal state are passed to the other states in the sequence.

As we mentioned before, selecting an action in the current state depends on the expected utility of
each action. Hence, a trade-off needs to be made between “exploitation” and “exploration”. In other
words, should an action be chosen which has already proven itself or do we prefer to try out new actions
which might produce even better results? This question of finding an optimal exploration policy has
been studied extensively in the subfield of statistical theory that deals with so-called “bandit” problems
[38, pp. 610-611]. An application of Q-learning techniques is given in [27].

Q-learning is closely related to learning in classifier systems [14]. Classifiers are rules, which, once
activated, activate other rules creating a chain of activations. The last rule in the sequence receives an
external reward, which is backpropagated (using a so-called “bucket-brigade” algorithm) to all rules
which caused its activation. In addition, new rules are created replacing poorly performing rules (i.e.,
which generate low rewards). Exploration of new rules is done using a “genetic” algorithm. This
learning method is introduced below.

Evolutionary algorithms  Evolutionary algorithms (EAs) apply the principles of natural evolution,
first discovered by Darwin and Mendel, in a computational setting. The cornerstones of evolution in
nature are “survival of the fittest” together with the transfer (with some variation) of genetic material
from parents to their children. Transfer of genetic material (DNA) from parents to offspring typically
occurs in two steps. During the recombination phase the parental chromosomes are paired two-by-two
and “crossed over”. Errors in this recombination process or external factors like radiation or chemical
processes can lead to additional mutations of the chromosomes.

The survival and future reproduction of offspring is depending on their “fitness”, that is, their ability
to gather scarce resources. This process of evolution causes good traits to remain in the population
and bad traits to die out in the long run.

Evolutionary algorithms mimic some aspects of these biological processes in a computer [14, 21, 2].
EAs typically use a population of individuals. The individuals are not living organisms in this case,
but for instance solutions for a optimization problem or strategies of agents playing a game. These
solutions are encoded on a “chromosome”, most often consisting of a sequence of binary or real-coded
numbers. As in natural ecosystems, the survival of these individuals depends on their fitness. A
suitable fitness measure in artificial ecosystems depends on the problem domain. It can for instance
be an objective function in case of an optimization problem, or the mean utility obtained by a strategy
in a game.

Genetic algorithms (GAs) are a special class of evolutionary algorithms, first developed by Holland
[14]. Here, the chromosomes of the individuals are encoded using bit strings. The genetic crossover and
mutation operators are used to create new individuals not yet present in the population. Additionally,
a selection operator is used to select the fittest (i.e., closest to the optimal solution) individuals
which are then allowed to produce offspring. Other classes of evolutionary algorithms include genetic
programming, evolution strategies, and evolutionary programming [2].

Bayesian beliefs The meaning of the general term “belief” is depending on the problem domain. In
a multi-agent context, beliefs may for instance represent contingent statements (i.e., they could be
incorrect) about an agent’s environment. To avoid confusion at this point, we therefore continue with
a discussion of “Bayesian” beliefs, defined as in the field of probabilistic reasoning.
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Bayesian beliefs are used to model an agent’s (probabilistic) knowledge of an uncertain environment.
Suppose the agent has some a priori knowledge about the likelihood of a set of hypotheses H;, with
i = 1,...,n. Furthermore, the agent has some conditional knowledge about the probability that an
event e will occur, given that one of the hypotheses is true. If event e then occurs, the beliefs about
the hypotheses are updated using the Bayesian update rule [50]:

P(H;)P(e|H;)

PULI) = S P (el Hy) P(Hy) 3.2

where P(H;|e) is the a posteriori probability of H; and P(H;) the a priori probability. P(e|H;) is the
conditional probability that event e occurs given hypothesis H;.

Other techniques  Other learning algorithms include classifier systems, neural networks and cellular
automata. For a short overview on these techniques, see [9, pp. 13-21]. Moreover, there are mixed
approaches, e.g., evolving decision trees using genetic programming and evolving a classifier system
using GAs.

3.2 The evolutionary approach

Most of today’s automated negotiation systems for e-commerce on the Internet use simple and static
negotiation rules. Examples are Kasbah'# and AuctionBot'®.'® These examples show that at the
moment few systems use techniques from the field of machine learning. Below we will discuss some
key papers which address the important question of how to make negotiation systems adaptive. The
basic technique used in these papers is the evolutionary approach.

Oliver [28] was the first to demonstrate that a system of adaptive agents can learn effective nego-
tiation strategies. Computer simulations of both distributive (i.e., single issue) and integrative (i.e.,
multiple issue) “alternating-offers” negotiations are presented in [28]. Binary coded strings represent
the agents’ strategies. Two parameters are encoded for each negotiation round: a threshold which
determines whether an offer should be accepted or not and a counter offer in case the opponent’s
offer is rejected (and the deadline has not yet been reached). These elementary strategies were then
updated in successive generations by a genetic algorithm (GA). A similar model has been investigated
in [12, 43]

More elaborate strategy representations are proposed in [20]. Offers and counter offers are gener-
ated in this model by a linear combination of simple bargaining tactics (time-dependent, resource-
dependent, or behavior-dependent tactics). As in [28], the parameters of these different negotiation
tactics and their relative importance weightings are encoded in a string of numbers. Competitions
were then held between two separate populations of agents, which were simultaneously evolved by a
GA.

Dworman et. al [10] studied negotiations between three players. If two players decide to form a
coalition, a surplus is created which needs to be divided among them. The third party gets nothing.
Of course, all three players want to be part of the coalition in this case. Moreover, they also want to
receive the largest share of the bargaining surplus. Genetic programming was used in this paper to
adapt the offers and to decide whether to form a coalition or not. A comparison with game theoretic
predictions and human experiments was made.

3.8 Using Bayesian beliefs

When agents have incomplete information about one another, it becomes important to learn about
the other agent by observing his behaviour during the negotiation process. Bayesian beliefs are often
used to make assumptions about the opponent such as his “type” [17] or his reservation price [49],[50].
These beliefs are updated depending on the opponent’s moves.

nttp://kasbah.media.mit.edu/.
I5http:/ /auction.eecs.umich.edu/.
16 An overview of agent-based e-commerce applications is given in [19, 13].
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However, once both agents use beliefs to determine their strategies, they also need beliefs about
their opponent’s beliefs, and so on. This is known as the problem of “outguessing regress” [50]. In
game theory this problem is solved by having a limited number of different types of players. The
beliefs and preferences of each type are common knowledge, but there is uncertainty about which
player is of which type. This theory, suggested by Harsanyi, is a technique for transforming a game
of incomplete information into a game of imperfect (but complete) information (see [3], pp. 501-510).
In reality however, the number of different types is usually very large, and, moreover, it is not always
realistic to assume that the preferences and beliefs of the different types are common knowledge. In
more practical applications (such as [17] and [49]), the problem of outguessing regress is circumvented
by assuming bounded rationality.

3.4 Distributed constraint satisfaction problem solving

Instead of quantatively encoding the preferences of the negotiating parties one might also use a more
qualitative model. Guttman and Maes [13] propose the use of distributed constraint satisfaction
problem solving techniques (DCSPs) as an alternative approach to the quantitative multi-attribute
utility theory. Concepts like reservation prices can be modeled within this framework using hard
constraints. Additionally, this model can in principle incorporate “soft” constraints, which model
other preferences such as inter-issue relationships (e.g. “availability is more important to me than a
low price”). In the latter case, not all constraints need to be satisfied [13]. Below, DCSP techniques
are briefly described. In this “classical” version, only hard constraints are taken into account. Then,
an application of these techniques in an e-commerce context is discussed. Finally, we discuss a closely
related technique which uses argumentation to resolve conflicts.

Principles of DCSPs  Each agent is associated with a variable and a set of domain values for that
variable in DCSPs, as well as a set of constraints for certain combination of values. For example, in an
e-commerce context a variable might simply be the price, and the reservation values of the agents form
constraints on this variable. The goal is then to find assignments of values to all the variables such
that all constraints are satisfied [48]. Communication between agents is done by sending messages.
An agent can propose an assignment, and the other agent can reply by either confirming or sending
a “no good” message. In case of a no good message the set of assignments which violate one or more
constraints is also communicated. This mechanism allows asynchronous activities of the agents, that
is, there is no need for a central control mechanism.

Negotiations involving multiple parties  This approach was used by Oliveira and Rocha [27] for
the formation of virtual organizations in an e-commerce environment. The idea is that in order to
satisfy some user’s need, often a combination of services is needed, which is provided by different
companies. The agent representing the user (called the “market agent”) negotiates with several
organization agents, after which a selection of these organizations is made and a virtual organization
is created. During the negotiations process, the bilateral constraints between the market agent and
the organizations need to be resolved. After the selection processes, remaining inter-organizational
constraints must be resolved. A solution is obtained in this phase by interaction between the selected
organizations, using a distributed constraint based algorithm and without any interference of the
market agent.

The protocol used during the negotiation phase is as follows. First, each participating organization
generates a bid, based on previous experience, and sends this bid to the market agent. A Q-learning
technique is then used to determine which bid to make. The actions (i.e., the bids) made are then
evaluated using the feedback given by the market agent. The market agent compares the bids using a
multi-criteria evaluation method based on qualitative measures (in which only the preference ordering
is assumed to be important). The market agent selects the organization which either proposes a
satisfactory evaluation, or he chooses the highest evaluation when a deadline is reached. Organizations
not selected are given feedback as to which attributes were not satisfactory (i.e., which constraints
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were not resolved). Negotiations take several rounds, and each round an organization is selected.

Although the basic idea seems to be promising, there are some hooks and eyes to this approach.
First, as pointed out in [13], the approach assumes “cooperation” in the sense that the agents do not
have any incentive to hide information. The agents negotiate over several attributes, thereby creating
a mutually beneficially outcome. This should be a sufficient incentive for the agents to reveal the
necessary information. However, we believe that in several cases the individual agents could gain by
lying (about for example their valuation of various offers). In particular, this may be the case in the
constraint process solving phase. In this phase, an inter-personal utility comparison is made in order
to select the best global solution.

Another problem is the evaluation of qualitative constraints. In [27], the constraints are transformed
into a quantitative evaluation function, which is needed for the comparison of the various offers. This
transformation seems rather arbitrary. Moreover, it remains unclear whether a distinction is made
between soft and hard constraints.

Argumentation-based conflict resolution ~ When negotiations involve several issues and the players
differ in their evaluations of the issues, a mutually beneficially situation can be achieved and efficiency
comes to play an important role in the negotiation process (as described above). However, when agents
have incomplete information about each others’ preferences negotiations often result in inefficient deals
(see Section 2.4). This problem can be resolved using argumentation. This approach resembles the
communication between agents in a DCSP setting. The idea is that the agents are able to provide
meta-information on why they have a particular objection to a proposal. This way information is
exchanged, but without fully disclosing each others’ preferences.

A negotiation architecture using this kind of meta-information is described in [30]. This approach
was also used in MIT’s Téte-a-Téte system!”, a bilateral integrative negotiation system for online
shopping [19]. Agents within this framework can: (1) make a new proposal, (2) accept the proposal
of the counter agent, (3) criticize a proposal or (4) withdraw from the negotiations. This system uses
the notion of a “critique” to enable agents to criticize a particular proposal. A critique is a comment
of an agent specifying which part of the proposal he dislikes. In case of a new proposal or critique, the
agent can also send additional information. For instance, a proposal may include conditions under
which it holds (e.g., I will provide you with X if you provide me with Y).

4. CONCLUDING REMARKS

The first part of this report reviewed literature on bargaining from the field of game theory. This
overview shows that game theory is a very useful tool to analyze bargaining situations in a mathemat-
ical fashion. Such a rigorous analysis is only tractable, however, if many details of human interaction,
for instance emotions or irrational behavior, are abstracted away. This may undermine the capability
of game-theoretical models to explain or predict human behavior.

This aspect may be less problematic when we consider systems in which artificial agents interact
with each other, because these agents are often designed to behave (in good approximation) in a
rational fashion. Game theory may therefore yield fundamental insights in the design of efficient
negotiation protocols for automated trading. Furthermore, given a negotiation protocol and under
certain assumptions, optimal strategies can sometimes be derived.

Nevertheless, game-theoretical assumptions like common knowledge and perfect rationality often
appear to be too strong in modeling practical situations. The issue of common knowledge has been
solved only partially in game theory by introducing a theory for players with “imperfect” informa-
tion. The development of game-theoretic models for boundedly-rational players is only just starting.
Our survey shows that techniques from the field of artificial intelligence are potentially very powerful
in situations of incomplete information and boundedly-rational players. Learning techniques devel-
oped within the AI community can for instance be used to adapt the agents’ behavior in complex

Thttp:/ /ecommerce.media.mit.edu/Tete-a-Tete//.
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environments and to construct accurate models of the other agents’ preferences.

A variety of learning techniques and state-of-the-art applications have been discussed in this report,
some of which seem to be very promising for the use in automated negotiations. Hence, we conclude
that combining techniques and ideas from game theory and the field of artificial intelligence opens
prospects to create robust, stable and intelligent negotiation systems in the near future.
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