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Abstract

We describe a system for automated bilateral negotiations in which arti�cial agents are
evolved by an evolutionary algorithm. The negotiations are governed by a �nite-horizon
version of the alternating-o�ers protocol. Several issues are negotiated simultaneously
and negotiations can be broken o� with a pre-de�ned probability.

In our experiments the bargaining agents have di�erent preferences regarding the
importance of the issues, which enables mutually bene�cial outcomes. These optimal
solutions are indeed discovered by the evolving agents. To further validate our system, the
computational results are also compared to game-theoretic (subgame perfect equilibrium)
predictions. The in
uence of important model settings, like the probability of breakdown
or the length of the game, is investigated in detail in this validation part.

We also present an extension of the evolutionary system in which the agents use a
\fairness" norm in the negotiations. This concept plays an important role in real-life
negotiations. Fairness is implemented by re-evaluating a reached agreement and rejecting
unfair agreements with a certain probability. In our model re-evaluation can take place
in each round or only if the deadline of the negotiations is reached. When fairness is
applied in each round, the agents reach equal utility levels. When the fairness of deals is
only evaluated in the �nal round, both symmetric and asymmetric outcomes can occur,
depending on the fairness model that is used.

1 Introduction

Lately, automated negotiations receive more and more attention, especially from the �eld of
electronic trading [4, 7, 8, 11]. In the near future, an increasing use of bargaining agents in
electronic market places is expected. Ideally, these agents should not only bargain over the
price of a product, but also take into account aspects like the delivery time, quality, payment
methods, return policies, or speci�c product properties. In such multi-issue negotiations, the
agents should be able to negotiate outcomes that are mutually bene�cial for both parties.
The complexity of the bargaining problem increases rapidly, however, if the number of issues
becomes larger than one. This explains the need for \intelligent" agents, which should be
capable of negotiating successfully over multiple issues at the same time.
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6, 2000. This research was part of the project \Autonomous Systems of Trade Agents in E-Commerce", funded
by the Telematics Institute in the Netherlands.
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Negotiations are governed by a �nite-stage version of Rubinstein's alternating-o�ers game
[14] in this paper. The learning process of the bargaining agents is modelled with an evolu-
tionary algorithm (EA). The strategies of the agents are updated in successive generations by
this EA. EAs are powerful search algorithms (based on Darwin's evolution theory) which can
be used to model social learning in societies of boundedly-rational agents [5, 12]. In an evo-
lutionary setting, the adaptive agents typically learn in three di�erent ways: (1) learning by
imitation, (2) communication (exchange of strategic information), and (3) experimentation.
It is important to note that EAs make no explicit assumptions of rationality. Basically, the
�tness of the individual agents is used to determine whether a strategy will be used in future
situations.

A small, but growing, body of literature already exists in this �eld. Oliver [11] was the �rst
to demonstrate that, using an EA, arti�cial agents can learn e�ective negotiation strategies.
In Oliver's model, the agents use quite elementary bargaining strategies. A more elaborate
strategy representation is proposed and evaluated in [8]. O�ers and counter o�ers are gen-
erated in this model by a linear combination of simple bargaining tactics (time-dependent,
resource-dependent, or behaviour-dependent tactics). A recent, more fundamental, study is
[15]. In [15], a systematic comparison between game-theoretic and evolutionary bargaining
models is made.

In this paper we assess to what extent the behaviour of the adapting agents matches with
game-theoretic models if multiple issues are involved. This work is therefore in line with the
work reported in [15], where bargaining only concerned a single issue. We study models in
which time plays no role, and models in which there is a pressure to reach agreements early
(because a risk of breakdown in negotiations exists after each round).

When no time pressure is present, an extreme partitioning of the bargaining surplus
occurs in the computer experiments (in agreement with game-theoretic predictions). Such
extreme outcomes are not observed in real-life situations, where social norms such as fairness
play an important role [3, 6, 16, 13]. We therefore incorporate a fairness measure in our
evolutionary system. Our fairness models can be tuned from \weak fairness" (i.e., accept
almost all agreements) to \strong fairness" (i.e., reject unfair deals). Also, the agents can
apply fairness in each round or only if the deadline is reached. Results are sensitive to both
aspects, but in general fair deals evolve more frequently if the agents evaluate the fairness of
reached agreements in each round.

This evolutionary model is a �rst attempt to study complex bargaining situations which
are more likely to occur in practical settings. A rigorous game-theoretic analysis is typically
much more involved or even intractable under these conditions.

The remainder of this paper is organised as follows. Section 2 gives an outline of the setup
of the computer experiments. A comparison of the computational results with game-theoretic
predictions is presented in Section 3. Fairness is the topic of Section 4. Section 5 summarises
the main results and concludes.

2 Experimental Setup

This section gives an overview of the setup of the computational experiments. The alternating-
o�ers negotiation protocol is described in Section 2.1. Section 2.1 also discusses how the
agents evaluate the outcome of the bargaining process using a multi-attribute utility function.
Section 2.2 then describes the (genetic) representation of the agents' strategies and the EA

2



which updates these strategies in successive generations.

2.1 Negotiation Protocol

During the negotiation process, the agents exchange o�ers and counter o�ers in an alternating
fashion. In the following, the agent starting the negotiations is called \agent 1", whereas his
opponent is called \agent 2".

Bargaining takes place over multiple issues simultaneously. An o�er can then be denoted
as a vector ~o. The i-th component of this vector, denoted as oi, speci�es the share of issue i
that agent 1 receives if the o�er is accepted. We assume (without loss of generality) that the
total bargaining surplus available per issue is equal to unity. Agent 2 then receives 1� oi for
issue i in case of an agreement. The index i ranges from 1 to m (the total number of issues).

As stated above, agent 1 makes the initial o�er. If agent 2 accepts this o�er, an agreement
is reached and the negotiations stop. Otherwise, play continues with a certain continuation
probability p (0 � p � 1). When a negotiation is broken o� prematurely both agents receive
nothing. Such a breakdown in negotiations may occur in reality when agents get dissatis�ed
as negotiations take too long, and therefore walk away from the negotiation table, or when
intervention of a third party results in a vanishing bargaining surplus.

If negotiations proceed to the next round, agent 2 needs to propose a counter o�er, which
agent 1 can then either accept or refuse. This process of alternating bidding continues for
a limited number of n rounds. When this deadline is reached the negotiations end up in a
disagreement and both players get nothing.

The o�ers and counter o�ers are speci�ed by the agents' strategies. In a game-theoretic
context, a strategy is a plan which speci�es an action for each history [2]. In our model,
a strategy speci�es the o�ers and thresholds for each round in the negotiation process. A
threshold speci�es whether an o�er should be accepted or rejected: If the value of the o�er
falls below the threshold the o�er is refused; otherwise an agreement is reached1.

The agents evaluate the o�ers of their opponents using an additive multi-attribute utility
function [8, 11]. We assume that all agents are risk neutral. Agent 1's utility function u1 is
then equal to ~w1 � ~o =

Pm
i=1w

i
1 � o

i. Agent 2's utility function u2 is equal to ~w2 � (~1 � ~o). ~wj

is a vector containing agent j's weights wi
j for each issue i. The weights are normalised and

larger than zero, i.e.,
Pm

i=1 w
i
j = 1 and wi

j > 0. Because we assume that 0 � oi � 1 for all i,
0 � uj(~o) � 1.

2.2 The Evolutionary System

We use an EA to evolve the negotiation strategies of the agents. This section discusses how
the EA has been implemented, and how the system can be interpreted as a model for social
or economic learning processes. The implementation is based on \evolution strategies"(ES),
a branch of evolutionary computation that traditionally focusses on real-coded problems [1]2.

The di�erent stages within an iteration of the evolutionary algorithm are depicted in Fig. 1.
The system initially starts with two separate and randomly initialised \parental" populations.
Agents in population 1 start the bargaining process (i.e., they are of the \agent 1" type). The
�tness of the parental agents is determined by competition between the agents in the two

1The same approach was used in [11, 15].
2The widely-used genetic algorithms (GAs) are more tailored toward binary-coded search spaces [9].
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Figure 1: Iteration loop of the evolutionary algorithm. Two populations of agents, containing agents
with di�erent weight vectors, are evolved separately. Agents in population 1 always start the bargaining
process. In the �tness evaluation, both the o�spring and the parental agents compete against agents
in the two parental populations. The best candidates of the union of parents and o�spring are then
selected to be the parents in the next iteration.

populations. Each agent competes against all agents in the other population. The average
utility obtained in these bilateral negotiations is then used as the agent's �tness value.

In the next stage (see Fig. 1), \o�spring" agents are created. An o�spring agent is gener-
ated in two steps. First, an agent in the parental population is (randomly, with replacement)
selected. This agent's strategy is then mutated to create a new o�spring agent (the mutation
model is speci�ed below). The �tness of the new o�spring is evaluated by interaction with the
parental agents3. A social or economic interpretation of this parent-o�spring interaction is
that new agents can only be evaluated by competing against existing or \proven" strategies.

In the �nal stage of the iteration (see Fig. 1), the �ttest agents are selected as the new
\parents" for the next iteration (the selection procedure is explained in detail below). This
�nal step completes one iteration (or \generation") of the EA. All relevant settings of the
evolutionary system are listed in Table 1.

EA Parental population size (�) 25
Parameters O�spring population size (�) 25

Selection scheme (�+ �)-ES
Mutation model self-adaptive
Initial standard deviations (�i(0)) 0.1
Minimum standard deviation (��) 0.025

Negotiation Number of issues (m) 2
parameters Weights of agents in population 1 ( ~w1) (0:7; 0:3)T

Weights of agents in population 2 ( ~w2) (0:3; 0:7)T

Table 1: Default settings of the evolutionary system.

3In an alternative model, not only the parental agents are used as opponents, but also the newly-formed
o�spring. This leads to a much more diverse collection of opponents. The �tness of the agents therefore
becomes more subject to noise. Nevertheless, similar dynamics have been observed in this alternative model.
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Selection model. Selection is performed using the (� + �)-ES selection scheme [1]. In
conventional notation, � is the number of parents and � is the number of generated o�spring
(�=�=25, see Table 1). The � survivors with the highest �tness are selected (deterministi-
cally) from the union of parental and o�spring agents. The (� + �)-ES selection scheme is
an example of an \overlapping generations" model, in which successful agents can survive for
multiple generations. In an economic context, selection can be interpreted as imitation of
behaviour which seems promising. In general, EAs use two additional operators: mutation
and recombination. These operators are explained in detail below.

Mutation and recombination model. Mutation operates directly on the \chromosome"
of an agent. The chromosome speci�es the strategy an agent uses in the bargaining game.
An agent's chromosome consists of a collection of \genes". These genes contain the values
for the o�ers and thresholds (per round). In multi-issue negotiations, a sequence of m genes
speci�es an o�er. Threshold values are represented by a single gene. Each gene is real-valued
with a range between 0 and 1. A similar strategy representation was used in [11, 15]. Oliver
[11], however, used binary-coded chromosomes.

The o�spring's genes xi are created by adding a zero-mean Gaussian variable with a
standard deviation �i to each corresponding gene of the parent [1, 15]. All o�spring genes
with a value larger than unity (or smaller than zero) are set equal to unity (respectively
zero). In our simulations, we use an elegant mutation model with self-adaptive control of the
standard deviations �i [1, pp. 71-73][15]. At the beginning of each EA run, the standard
deviations �i are set equal to �i(0) = 0:1 (see Table 1). To prevent complete convergence of
the population, we force all standard deviations to remain larger than a small value �� = 0:025
(see Table 1).

Mutation can be interpreted as undirected exploration of new strategies, or as mistakes
made during imitation. Communication between the agents is often modelled by a recom-
bination operator, which typically exchanges parts of the parental chromosomes to produce
new o�spring. Earlier experiments [15] showed little e�ect on the results when traditional re-
combination operators from ES (like discrete or intermediate recombination [1]) were applied.
We therefore focus on mutation-based models in this paper.

3 Validation and Interpretation of the Evolutionary Experi-

ments

Experimental results obtained with the evolutionary system are presented in this section. A
comparison with game-theoretic predictions is made to validate the evolutionary approach.
Section 3.1 discusses the ability of the evolutionary system to (a) avoid the occurrence of
disagreements and (b) to discover agreements in the neighbourhood of the Pareto-e�cient
frontier. Section 3.2 compares, for di�erent settings, the (mean) long-term behaviour of the
evolving agents with game-theoretic (subgame perfect equilibrium) predictions.

3.1 The Evolution of Pareto-E�cient Agreements

First, we investigate whether the adaptive agents learn to avoid the occurrence of disagree-
ments. If we set the continuation probability p equal to 1, and the number of rounds n equal
to 10, disagreements can only occur when the deadline is reached (i.e., after 10 rounds). The
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computer experiments show that the percentage of disagreements is very small (around 0:1%).
This is somewhat surprising, because in the long run almost all agreements are reached in
the very last round (after 1000 generations, about 80% of all agreements are reached just
before the deadline). Furthermore, the last agent in turn demands almost the entire surplus
(for each issue). Nevertheless, his opponent accepts this extreme take-it-or-leave-it deal. This
behaviour agrees with game-theoretic predictions (see Section A.1).

Next, we study a model with a risk of breakdown in the negotiations (p = 0:7). Initially,
the percentage of disagreements is approximately equal to 23%. This percentage rapidly de-
creases to a value between 1% and 10%. The number of disagreements decreases because in
the long run most agreements are reached in the �rst round (after 1000 generations, approxi-
mately 75% of the agreements are reached immediately). Again, this behaviour is consistent
with game-theoretic predictions (see Section A.2).

Figure 2 maps the agreements reached in the evolutionary system (for the same settings,
i.e., p = 0:7 and n = 10) onto a two-dimensional plane. Each point in this plane shows the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ut
ili

ty
 a

ge
nt

 2

utility agent 1

Pareto-efficient frontier
gen. 0

gen. 100

S (0.7,0.7)

Figure 2: Agreements reached by the evolving agents at the start of a typical EA run (generation
0), and after 100 generations (for p = 0:7 and n = 10). Each agreement is indicated by a point in
this two-dimensional plane. The Pareto-e�cient frontier is indicated with a solid line. In point S [at
(0:7; 0:7)] both agents obtain the maximum share for their most important issue, and receive nothing
for the other issue. Note that, after 100 generations, almost all agreements are located in the vicinity
of the Pareto-e�cient frontier.

utility for both agents which results from an agreement. Agreements can never be located
above the so-called \Pareto-e�cient frontier" in this plane (indicated by the solid line). An
agreement is located on the Pareto-e�cient frontier when an increase of utility for one agent
necessarily results in a decrease of utility for the other agent. A special point on the Pareto-
e�cient frontier is S. In this symmetric point [at (0:7; 0:7)] both agents obtain the maximum
share of the issue they value the most, and receive nothing of the less important issue. Initially,
at generation 0, many agreements are located far from the Pareto-e�cient frontier. After
100 generations, however, the agents have learned to coordinate their behaviour and most
agreements are Pareto-e�cient. It is important to note that, even in the long run, the
agents keep exploring the search space. This results in continuing movements of the \cloud"
of agreements (visible in Fig. 2) along the Pareto-e�cient frontier. The (mean) long-term
behaviour of the evolving agents is studied in more detail in the next section.

Results in this section already show that the adaptive agents learn to avoid the occurrence
of disagreements and, furthermore, are able to coordinate their behaviour in an e�cient way.
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3.2 Comparison of Long-Term Behaviour with Game-Theoretic Predic-
tions

The computational results are compared in more detail with game-theoretic predictions in this
section. The key equilibrium concept used by game theorists to analyze extensive-form games4

is the subgame perfect equilibrium (SPE) [14, 2]. Two strategies are in SPE if they constitute
a Nash equilibrium in any subgame which remains after an arbitrary sequence of o�ers and
replies made from the beginning of the game. Rubinstein successfully applied this notion
of subgame-perfection to bargaining games [14]. His main theorem states that the in�nite-
horizon alternating-o�ers game has a unique SPE in which the agents agree immediately on
a deal (if time is valuable). Our experimental setup di�ers in two respects from Rubinstein's
model (see Section 2.1). First, we use a �nite-length instead of an in�nite-length bargaining
game. Second, the agents bargain over multiple issues instead of a single issue. This changes
the game-theoretical analysis in some respects, as we show in the Appendix.

It is important to note that we assume in the game-theoretic analysis of the Appendix that
the bargaining agents behave fully rational and have complete information (for instance about
the importance of the di�erent issues for their opponent). Both assumptions are obviously not
valid for the evolving agents in our computational experiments (who learn by trial-and-error
instead of abstract reasoning). The SPE behaviour of fully rational agents will nevertheless
serve as a useful theoretical benchmark to interpret the behaviour of the boundedly-rational
agents in our experiments.

As we mentioned before in Section 3.1, it is optimal (i.e., subgame-perfect) to propose
a take-it-or-leave-it deal in the last round if p = 1. The logic of subgame-perfection then
requires that the responder in the �nal round accepts this extreme deal (see Section A.1).
Hence, we expect the �tness of agents in population 1 to converge to unity if n is odd, and to
converge to zero if n is even (the opposite holds for the agents in population 2). This tendency
is indeed clearly visible in Fig. 3a, even for games as long as 10 rounds. Figure 3b shows that
game theory predicts that the in
uence of the �nite length of the game diminishes for longer
games if p < 1. Notice for instance in Fig. 3b that the SPE partitioning is quite asymmetric
for small n, but more symmetric for larger n. This e�ect is actually much stronger in the
evolutionary system (see Fig. 3b). The evolving agents do not reason backwards from the
deadline (as is done in game theory, see Section A.2), but focus on the �rst few rounds, where
expected utility is relatively high. This means that only few agreements are reached in later
rounds. As a result, the deadline is not perceived accurately by the evolving agents.

It is interesting to note that, in the limit of n!1, game theory predicts that the agents
in population 1 have a �tness of � 0:71, whereas the agents in population 2 have a �tness
of � 0:68. This corresponds to a point in the vicinity of the symmetric point S indicated in
Fig. 2. The computational experiments reported in Fig. 3b show that the behaviour of the
agents is in fact much better predicted by an in�nite-horizon model than the �nite-horizon
model for n � 8. This supports our previous claim that the boundedly-rational agents do
not accurately perceive and exploit the �nite deadline of the game. In fact, they strongly
overestimate the game length (see [15]).

We compared the computational results with predictions made by game theory in this
section. Game-theoretic (SPE) predictions appear to be very useful to interpret the behaviour
of the adaptive agents in the evolutionary simulations. We investigated the in
uence of the
�nite length of the game. In games without a risk of breakdown, the agents successfully exploit

4That is, games with a tree structure.
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Figure 3: Comparison of the evolutionary results with SPE predictions for (a) p = 1 (time indi�erence)
and (b) p = 0:95. The SPE predictions for successive values of n are connected to guide the eye.
Figure 3a shows that the �nite length of the game has a strong impact on the long-term behaviour if p =
1. If p < 1, see Fig. 3b, the �nite character of the game is not fully exploited by the boundedly-rational
agents in our computational experiments. We measured the mean �tness of agents in populations 1
and 2 after the initial transients have died out. The error bars indicate the standard deviations across
25 runs.

their last-mover advantage. In games with a risk of breakdown, on the other hand, this last-
mover advantage is smaller than predicted by game theory. Moreover, if the game becomes
long enough, the �nite deadline is no longer perceived by the evolving agents. In that case,
their behaviour actually agrees better with game-theoretic predictions for the in�nite-horizon
game.

4 Social Extensions: Fairness

Game-theoretical models for rational agents often predict very asymmetric outcomes for the
two parties. We showed in Section 3.2, especially in Fig. 3a, that such \unfair" behaviour can
also emerge in a system of adaptive agents. Game-theoretic (SPE) predictions have also been
compared to human behaviour in laboratory experiments in the past (see [13] for an extensive
overview). Large discrepancies between human behaviour and SPE predictions were found in
these experimental studies, both for ultimatum and multi-stage games [3, 6, 16].

A possible explanation for the occurrence of these discrepancies is the strong in
uence of
social or cultural norms on the individual decision making process. Binmore et al. [3] argued,
for example, that the agents in the strongest bargaining position demand less than the SPE
amount because they value the \fairness" of the outcomes. In a recent paper, Lin and Sunder
[6] propose a model in which the probability of acceptance of a proposal increases with the
amount o�ered to the responder. Such a model, making more realistic assumptions about the
agents' behaviour, appears to organise the data from experiments with humans better than
the SPE model [6].

We implemented Lin and Sunder's model in our evolutionary system. In this extended
model, the negotiation protocol is as described in Section 2.1 with one exception: If an
agreement is reached, the responder has the opportunity to re-evaluate his decision. The
probability that he �nally accepts the agreement then depends on the utility he acquires. If
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the agreement is rejected, the game continues (unless the deadline has been reached). Several
\fairness" functions, determining the probability of acceptance, are shown in Fig. 4. We use
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Figure 4: Di�erent fairness functions used by the agents in the evolutionary experiments to determine
the degree of fairness of agreements. Each model speci�es the probability that the responding agent
accepts an agreement as a function of the acquired utility. The models range from a model without
a fairness check (model no. 0) to a model (no. 5) in which even fair agreements are rejected with a
high probability.

piece-wise linear functions with up to three segments5.

We observed in the former experiments without a risk of breakdown (p = 1) (see Sec-
tion 3.2) that, in the long run, almost all reached agreements are highly asymmetric (the last
agent in turn demands and receives almost the whole bargaining surplus). In these experi-
ments almost all agreements are delayed until the very last round. It is therefore interesting
to investigate the system's behaviour if the agent in the weakest bargaining position rejects
this take-it-or-leave-it deal with a certain probability. The e�ect of such a fairness model,
with only a single fairness check in the last round, is studied in Fig. 5a. Figure 5a shows (for
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Figure 5: In
uence of di�erent fairness models on the mean �tness of the evolving agents (for p = 1
and n = 3). In Fig. 5a agreements are only re-evaluated if the deadline of the game is actually reached.
In Fig. 5b all agreements are re-evaluated. Notice in Fig. 5b that for models 2, 3 and 4 the �tnesses of
the evolving populations are approximately equal to each other (in the long run). Standard deviations
are omitted for clarity. The di�erent fairness models are speci�ed in Fig. 4.

5Piece-wise linear functions nicely �t the experimental data reported in [6]. Note, however, that [6] evaluates
ultimatum game experiments, as opposed to the multiple-stage bargaining experiments reported here.

9



p = 1 and n = 3) that if the agents in population 2 (the last responders) use fairness model
0 (i.e., no fairness check) or 1 (i.e., a weak fairness model), the agents in population 1 reach
a relatively high �tness level. Fair agreements evolve, on the other hand, when the agents in
population 2 use model 2 (a model with average fairness). In this case the mean long-term
�tness is approximately equal to 0:7 for all agents (most agreements are located close to the
symmetric point S in Fig. 2). However, when a stronger fairness function is used by the
agents (models 3 through 5), the roles reverse and the agents in population 2 reach a higher

�tness level than their opponents in population 1 (see Fig. 5a). In these extreme models,
many last-round agreements are rejected. As a result, the deadline is e�ectively reached one
round earlier. The agents in population 2 can then demand a large share of the surplus in the
round before last. If the agents in population 1 do not accept this proposal, chances are few
that their counter proposal in the last round is accepted, even if this counter proposal can be
considered as fair. Such behaviour by agents in population 2 is therefore better characterised
as \greedy" rather than fair. These results show that fair outcomes can in principle evolve
in an evolutionary system. However, we also observe a rather large sensitivity to the actual
fairness function that is used by the adaptive agents.

An alternative fairness model, in which each agreement is re-evaluated, is studied in
Fig. 5b. For fairness model 1, similar results are observed as in Fig. 5a. However, when the
adaptive agents use fairness models 2 through 4, the agents in both populations reach almost
identical �tness levels (close to point S). Agreements are also predominantly reached in the
�rst round, indicating that delaying the negotiations is no longer advantageous. Figure 5b
clearly shows that the agents' long-term behaviour is much less sensitive to the shape of the
fairness function. Note that the adaptive agents have no explicit knowledge about the location
of the symmetric point S. This knowledge is also not incorporated within the fairness models.

Figure 5b shows that when the agents use fairness model 5, the mean �tness of the agents
decreases. This decrease in performance is caused by an increasing number of disagreements
in the last round. In the experiments we observe that, for fairness model 5, the agents
propose a symmetric partitioning, close to point S, in each round. In this case, a proposal
is only accepted with a probability of 0:4 (see Fig. 4). Approximately 22% of all bargaining
games ends up in a disagreement in this case. The maximum �tness which can be obtained
is therefore approximately equal to 0:55. Figure 5b shows that the long-term �tness of the
agents is indeed close to this value.

Fair agreements can therefore evolve when the agents check the fairness of agreements
each round, although relatively strong fairness models can lead to an increasing number of
disagreements. These results show that incorporating a fairness norm in an evolutionary sys-
tem is feasible. This opens new prospects to capture human behaviour, observed in laboratory
experiments, in computational models with arti�cial agents.

5 Conclusions

We investigate a system for automated negotiations, in which arti�cial agents learn e�ective
negotiation strategies using evolutionary algorithms. Negotiations are governed by a �nite-
horizon version of the alternating-o�ers game. Both negotiations with and without a risk of
breakdown are studied. Furthermore, several issues are negotiated simultaneously. In our
experiments, the agents have di�erent preferences regarding the importance of the issues.
This implies that the agents can reach mutually bene�cial agreements if they coordinate their
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behaviour in an optimal manner.
To validate the evolutionary approach, we apply techniques from the �eld of game theory.

In this validation part, the long-run behaviour of the evolving bargaining agents is compared
with subgame perfect equilibrium (SPE) predictions for fully rational and completely informed
agents. These SPE predictions appear to be very useful to interpret the behaviour of the
boundedly-rational agents. When no risk of breakdown exists, the agents delay almost all
agreements until the deadline is reached. The last agent in turn then proposes a take-it-or-
leave-it o�er and demands most of the surplus for each issue. Similar behaviour is predicted
by game theory. When a risk of breakdown exists, on the other hand, most agreements are
reached in the very �rst round. Experiments show that the adaptive agents do not accurately
perceive and exploit the �nite deadline of the game in this case, especially in long bargaining
games. In such games, their behaviour tends more towards theoretical outcomes for in�nite-
horizon bargaining games.

An asymmetric division of the bargaining surplus, predicted by theoretical (SPE) models,
appears to be unrealistic in many real-life bargaining situations. We therefore modelled the
important concept of \fairness" in our evolutionary system. In this extended model, the
agents carry out a fairness check before an agreement is �nally accepted. This fairness check
is carried out either solely for agreements which are reached just before the deadline, or for
all agreements. In both cases, fair outcomes (i.e. agreements with equal utilities for both
players) can be obtained. In the second case, however, the outcomes are much less sensitive to
the actual fairness model. This is an interesting result, considering that the agents can reach
such fair agreements without any explicit information about each other's preferences. These
results are encouraging and open new prospects to capture human behaviour (as observed in
laboratory experiments) in computational models with arti�cial agents.

We intend to study more complex bargaining scenarios in the future. Many extensions of
the basic alternating-o�ers model have already been proposed in the game-theoretic literature
[10]. Our simulation environment enables us to study cases for which a rigorous mathematical
approach is unwieldy or even intractable. We also plan to further investigate the various
experimental fairness models that are available in economic literature.

A Game-Theoretic Analysis of Multi-Issue Negotiations

Subgame perfect equilibrium strategies for multiple-stage games with complete information
can be derived using a backward induction approach. In this appendix we follow the same
approach as in [15], but extend the analysis to multi-issue negotiations. In Section A.1,
we study a model without a risk of breakdown. The more general model (with a risk of
breakdown) is then investigated in Section A.2.

A.1 Model without a Risk of Breakdown (p = 1)

Because time plays no role in this model, the last agent in turn has the opportunity to reject
all proposals from his opponent and demand the entire surplus (for each issue) in the last
round. In subgame perfect equilibrium, the other agent accepts this proposal. It should be
noted that there does not exist a SPE in which the responder rejects the proposer's take-it-
or-leave-it deal (follow the discussion in [2, pp. 200-201]). If the maximum number of rounds
n is odd, agent 1 will therefore receive the entire surplus, whereas agent 2 receives all in case
n is even.
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A.2 Model with a Risk of Breakdown (p < 1)

Assume that agent i makes a proposal ~oi(t) to his opponent, agent j, in round t of the
negotiations (t < n). Assume also that agent i knows that agent j's threshold is equal to
�j(t). It is then a best response for agent i to propose a Pareto-e�cient deal to agent j.
Consider for example the two-issue bargaining problem depicted in Fig. 2. Suppose agent i
proposes an equal partitioning for both issues to agent j. In case of an agreement, this would
yield the utility pair (0:5; 0:5) in Fig. 2. However, agent j would be indi�erent if agent i
demanded the whole surplus for his most important issue and 6=21 for the other issue. This
way, agent i's utility would increase from 0:5 to 11=14, whereas agent j's utility would remain
the same. This latter agreement is located on the Pareto-e�cient frontier. A similar argument
holds if the roles of the agents are reversed and player j makes a proposal to agent i.

The SPE partitioning can now be calculated as follows. If the maximum number of rounds
n is even, agent 2 will be the proposer in the last round (i.e., at t = n� 1). Agent 2 will then
demand the whole surplus for each issue and agent 1 will receive nothing. This division of the
surplus would yield agent 2 a payo� (expected utility) of pn�1. We now analyse the previous
round (t = n � 2). Suppose agent 1's o�er to agent 2 is ~o1(t = n � 2). Agent 2's payo�
would then be pn�2u2(~o1(t = n � 2)). In equilibrium, at t = n � 2 agent 1 should propose
agent 2 a payo�-equivalent deal. This implies that u2(~o1(t = n � 2)) should be equal to p.
Agent 1's payo� is then pn�2f1(p), where f1(u2) describes the location of the Pareto-e�cient
frontier. This function returns the utility of agent 1 when agent 2's utility is equal to u2 and
the agreement is Pareto-e�cient6. At t = n � 3, agent 2 can, in a similar fashion, propose
an equivalent o�er (in terms of payo�) and receive a payo� of pn�3f2(pf1(p)). (The f2(u1)
function is the inverse of the f1 function.)

This procedure is then repeated until the beginning of the game is reached (at t = 0).
The same line of reasoning holds if the number of rounds is odd (simply switch the roles of
agent 1 and agent 2). In equilibrium, agent 1's payo� at t = 0 is then equal to x�1(n) and
agent 2 receives x�2(n). As in the in�nite-horizon game [14], the agents agree immediately on
a deal. Table 3.2 shows the SPE partitionings for di�erent game lengths.

n Payo� agent 1 (x�
1
) (SPE) Payo� agent 2 (x�

2
) (SPE)

1 1 0
2 f1(p) p
3 f1(pf2(p)) pf2(p)
4 f1(pf2(pf1(p))) pf2(pf1(p))
5 f1(pf2(pf1(pf2(p)))) pf2(pf1(pf2(p))))
6 f1(pf2(pf1(pf2(pf1(p))))) pf2(pf1(pf2(pf1(p)))))
: : : : : : : : :

Table 2: Payo�s for agent 1 and agent 2 for di�erent lengths (n) of the alternating-o�ers game,
assuming that both agents use SPE strategies.

6For the bargaining problem studied in this paper (depicted in Fig. 2), the Pareto-e�cient frontier is
described by the function f1(u2) =

0:7

0:3
(1� u2) for u2 > 0:7. For u2 � 0:7, f1(u2) = 1� 0:3

0:7
u2.
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