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Abstract

Virtual environments (VEs) are often a complex
mixture of novel and traditional user interface
strategies, and also incorporate real-time dynam-
ics and parallelism. We describe a modelling tech-
nique we are developing, which is based on the
process algebra CSP. It is shown how VE systems
and tasks can be modelled in CSP, and how a pro-
totype system can be generated from the system
specification by mapping a subset of CSP signals
onto user interface functionality.
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1 Introduction

When designing Virtual Environments (VEs) it
seems natural to design them as consisting of mul-
tiple ‘agents’, ‘objects’, or processes. For exam-
ple, MUD and Virtual Reality (VR) systems are
usually built out of a large number of concurrent
(i.e. parallel and communicating) processes. In
our own VE project, the Virtual Music Centre
(VMC) [34], a high degree of concurrency exists
also. The agents within the VE, the user navigat-
ing through it, as well as some more traditional
‘desktop’ user interface elements operate or may
be operated concurrently. Plans also exist to en-
able multiple users to enter the VMC simulta-
neously, but no precise model yet exists of what
information is shared and communicated between
the users.

However, process concurrency is known to be
a difficult computer science problem. Typical
concurrency problems are timing problems and
unaccounted-for unusual situations, and may sur-
face as anything ranging from crashing bugs to

ill behaviour that may be classified as usability
problems. This is already seen with systems mod-
elled after the desktop metaphor. In some ways,
the desktop model is a form of VE, and may
be considered a relatively established and mature
model. Desktop systems often have concurrency
bugs. For example, multiple windows acciden-
tally access the same data concurrently, or the
effects of a resize button or scrollbar is not noti-
fied properly, and the system crashes or the dis-
play becomes inconsistent. Concurrency-related
usability problems also occur. For example, some
windows do not allow the user to concurrently ac-
cess other windows because of limitations of the
software, and freeze the rest of the application.
In some cases, this is not clear to the user, who
may even think the application crashed.

It is attractive to enhance VEs with multi-
modal interaction. Here, we define a modality
as a distinct channel through which information
may be conveyed, either from the computer to the
user (output modalities: ears, eyes) or the other
way (input modalities: microphone, keyboard).
In the literature, multimodality is interpreted in
different ways by different authors, depending on
their point of view: modalities may be classified
not just according to physical distinction criteria,
but also to cognitive or technological ones [5] [32]
[27]. So, it is also possible to think of a line of
text and a graphic as different modalities, because
they have different cognitive properties. Bernsen
[5] classifies continuous and isolated-word speech
as different modalities. Isolated-word speech ex-
ists only because of technological constraints, and
has distinct technological and cognitive proper-
ties. In the same vein, it is even conceivable
to view working with different windows as multi-
modality. For example, a pull-down menu and a
text entry field are two distinct technological con-
cepts, and have different cognitive properties as
well. Here, the concept of multimodality touches
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with the multi-agent concept as described above.
This suggests that multimodality could naturally
be modelled using concurrent processes, having a
process for each modality.

1.1 Formal methods in HCI

As argued above, VE development seems to call
for a modelling technique which enables designers
to work easily and naturally with multiple concur-
rent processes. From a software engineering (SE)
point of view, reducing the amount of concur-
rency may be more desirable. From a HCI point
of view however, modelling systems as many par-
allel processes standing for interaction compo-
nents may be closer to the conceptual or mental
model the HCI designers have in mind, resulting
in less problems when mapping the conceptual
model to the implementation model [23]. It is
also attractive to use a formal technique, because
of its acclaimed properties [20]:

1. Conceptual clarity, aiding communication be-
tween the parties involved, in particular, the
HCI and SE parties [14].

2. Enforcement of precision while designing, and
stimulation of a specific way of thinking about
the design. This may lead to timely consider-
ation of issues that are otherwise overlooked.

3. Ability to manually or automatically ver-
ify usability-related properties. Various ex-
amples of such properties are found in the
HCI literature. They can be separated into
validity properties, such as reachability of
states, deadlock-freeness, [27], complementar-
ity, equivalence, and redundancy of modalities
[10], and cognitive ones, such as task duration,
cognitive load, and interface consistency [16].

Looking at the interactive systems literature,
various attempts at formal specification have
been made using various formal languages, rang-
ing from those suitable for highly declarative and
constraint-based descriptions (predicate logic,
functional languages) to highly procedural ones
(production systems, state automata, Petri nets,
process algebras). See [20], [36], or [19] for exam-
ples of each. However, they remain little used in
practice. This may in part be caused by factors
other than their usefulness [7], but there are few
clear results showing that they really work [15].
We will discuss some of the potential causes of
problems with formal methods, and why formal
methods may nevertheless be useful.

Sometimes it is claimed that an advantage of
formal specification is its relative completeness
with respect to reality [14], but exactly the op-
posite is the case. Aspects which may be impor-
tant are necessarily omitted to make the specifi-
cation tractable [20], or may be omitted unwit-
tingly, even in simple cases [18]. Especially in
(but not exclusively to) HCI, some of these as-
pects are even practically unspecifiable. Exam-
ples are the general context in which a system
is used, and unanticipated user behaviour with a
new system, evoked by unanticipated user knowl-
edge and expectations. This means that, in gen-
eral, some unspecified aspects remain that can
only be examined by trial and error. In the case
of HCI, this may also require repeated communi-
cation with the users. As a complement to devel-
oping by means of specifications, HCI often uses
example-based techniques, such as mock-ups, sce-
narios, and prototypes. These are then consid-
ered by the developer(s) in detail, or shown to
the end users [33]. However, example-based tech-
niques may also lead to underemphasis of those
aspects that can not be derived from a number
of examples only, and should in turn be comple-
mented with precise descriptions [3].

Next to this, the enforcement of precision is of-
ten seen as a drawback rather than an advantage.
This may be caused by an inappropriate level of
abstraction, but also by incompatibility of the
specification with the developers’ needs. It is im-
portant that the specification should be usable as
the primary memory aid in various stages of the
development process by various parties (display-
based reasoning) [12]. Therefore, it should also
conform to the nature of the design tasks, oth-
erwise the specification may become a burden
rather than an aid. In order to ensure that a
method is useful as a thinking aid, we will have
to look at what the different parties involved in
the design of interactive systems need.

HCI specification techniques often document
the user and the user’s view. The user’s task
is usually documented using hierarchical task
models, and the user’s conceptual knowledge is
usually documented using semantic nets supple-
mented with plain-text descriptions [28] [37]. The
most popular formal HCI models are formal in-
stances of such models, such as Goals Opera-
tors Methods Selection-rules (GOMS) [16] and
Extended Task Action Grammar (ETAG) [14]
(see [19] for an overview). Other models in-
clude flowchart models [22]. Note that, like many
example-based methods, these formal models are
mostly procedure-oriented rather than declara-



tive or constraint-oriented, describing what hap-
pens step by step. Some of the more detailed
models are also capable of modelling tasks that
can be executed simultaneously, though usually,
the tasks may not be concurrent, e.g. there is no
way to describe how simultaneous tasks may de-
pend on each other.

Other popular models of interactive systems
are ‘compositional’ models, which are gener-
ally more suited to SE issues, as modular
composition (manner of division of a system
into subsystems) is an important SE prin-
ciple. These models include Model-View-
Controller (MVC) and Presentation-Abstraction-
Control (PAC) (see [23] for a comparison, or [29]
or [8] for an overview of variants). In these mod-
els, systems are composed of networks or hier-
archies of concurrent agents, or ‘interactors’. In
PAC, separation is made within each interactor
between the components internal data (A), pre-
sentation to and interaction with the user (P),
and dynamics and communication to other PAC-
modules (C). Furthermore, it prescribes commu-
nication dependencies to be hierarchical. The
structure of MVC is less strict: there may be
one or more models, standing for modules within
the application’s internals. There may be one or
more view-controller component pairs communi-
cating with the models. The controller may in
turn be a model for more view-controller pairs.
The view-controller pairs have a one-to-one rela-
tion to user interface objects. The view controls
the presentation to the user, and the controller
manages the user’s manipulations.

The idea behind these models is closely re-
lated to the object-oriented paradigm, the goal of
which is to enable maximum separation of con-
cerns and re-use of standard components. The
models by themselves are not formal, but can
be formalised easily by describing the compo-
nents in a formal language [29]. Usually they are
used only to model the dependency structure of
object-oriented programs, the components having
a one-to-one relation to objects. However, even
the SE benefits of prescribing such fine-grained
composition, and emphasising composition rather
than dynamics, are still uncertain, as they are for
object-oriented methods in general [11] [26] [13]
[1]. One of the problems that have been reported
is the difficulty of following the control flow of an
object-oriented program, even if the program has
no processes runing in parallel. Explicit emphasis
on dynamics, not inherent to interactor models,
may greatly aid SE development.

Summarising, we can say that the aspects em-
phasised by the HCI and SE parties are different:
one emphasises control flow, while the other em-
phasises data flow. These views may turn out to
be hard to compare because of this [17], and it
may result in different aspects to remain under-
specified, formal precision notwithstanding. This
may be a problem, since the views may lead to
incompatible specifications as well, as is indicated
in [38]. In this article, it is even claimed that us-
ability is incompatible with re-usability. At the
least, it would be useful to have the system and
task models in the same formal notation, so they
can be compared and verified more easily [35] [29].

1.2 Our approach

The emphasis of this article lies not on the pos-
sibilities of formal verification of usability and
other properties, but on the possibilities of a for-
mal technique to act as a reference point through
various activities of the development process. It
should combine systems design, prototyping, and
task modelling.

We have chosen to base our formal technique
on process algebra, in particular, Communicating
Sequential Processes (CSP) [21]. CSP by itself is
compositional, and can easily be combined with
interactor models, as is shown in Markopoulos’s
work. Markopoulos combines ADC (a variant
on PAC) with LOTOS (LOTOS [6] is an inter-
national language standard, and an extension of
CSP) [29] [30]. In CSP, all dynamics are also de-
scribed explicitly. It is close enough to an actual
program to be easily executable, lending itself to
prototyping approaches. Markopoulos even sug-
gests that hierarchical task models may be ex-
pressed naturally in process algebra, though a
more detailed account of this would be desirable.
However, Markopoulos ran into some of the limi-
tations of LOTOS for user interfaces: in particu-
lar, the UI prototyping capabilities of the LOTOS
tools are limited.

Our own approach is to use CSP as a basis,
but not limit ourselves to standard CSP toolkits,
which are generally designed for hardware and
software verification. Instead, we tailor our own
formalism and additional tools for use with VE
development. We are developing this technique
by starting off with the simplest form of CSP,
and exploring its possibilities and limitations by
trying to model the VMC in some detail, so as
to obtain a larger than toy-size example. The
VMC is considered to be a sufficiently rich ex-



ample, also containing a natural language dia-
logue agent and multimodality. In comparison
with interactor models, the compositional gran-
ularity of our technique is slightly coarser: an
interactor (as comparable to a PAC agent, an M
component or a VC pair) corresponds to one CSP
process. Unlike interactor models, this technique
does not prescribe specific compositional depen-
dencies, enabling experimentation with the tech-
nique and with interaction strategies.

2 CSP as a modelling language

Specification in general has a number of relevant
aspects that we will discuss here.

• A specification should be modular . This
means that a specification of a large system
should be composed out of smaller specifica-
tions. The smaller parts should be relatively
independent, and should be meaningful speci-
fications in their own right. Note that the task
hierarchies and the software module composi-
tions discussed in section 1 are both modular,
though they are meaningful in different ways.

• In section 1 we have identified the need for
a close mapping of a specification to a con-
crete and executable system for the design
of interactive systems. However, a specifica-
tion should also allow for property oriented
(or declarative) specification styles. In many
cases, the specification process starts out with
a rather loose set of requirements that all
should be satisfied. A property oriented spec-
ification style matches this situation, because
it allows one to formalize each of these require-
ments in turn, and then to conjoin them.

Process algebras are related to state-based
specifications. These have been used for a very
long time and go back to finite state automata.
Especially when limited to finite state specifica-
tions, there is an impressive tool support for au-
tomatically verifying system properties, for in-
stance by tools like SPIN, Verilog, etc. Not all
system requirements are specified easily or nat-
urally in terms of states, however, and so it is
important that state-based specifications can be
combined with, for instance, behavioral specifica-
tions.

The theoretical basis of process algebras, like
CSP, can be found in the theory of labeled tran-
sition systems (LTS). A LTS may in turn be de-
scribed in terms of a set of logical constraints.

Basically, a LTS is a state-based system. It is
a graph with a set of nodes Q that are called
states , and with labelled edges which represent a
transition relation t. We start off with a small ex-
ample, taken from our VMC specification. Here,
a user can walk around within the confinements
of a building and interact with two other agents.
A natural requirement for interaction is physical
proximity of the user to the agent. We might have
additional requirements, for example, the require-
ment that the user is looking at the agent.

This situation, although fairly simple, brings
forward some typical issues already. We wish to
work with a concept like “proximity requirements
for communication” in an abstract way, without
going into great detail how this is implemented,
because:

• The precise definition of proximity might
change over time, for example by incorporat-
ing a notion of viewing direction.

• The precise implementation might involve too
much detail to specify practically.

• For the current version of the VMC, all that
the agents react to is whether communication
between the user and some agent is proximity-
enabled or not.

The solution here is not to specify all minute
detail, but rather to abstract from it: we specify
only what is relevant for modelling the dynamics
of most of the processes and agents in the VMC.
In our example, the proximity status of the user
may be modelled by the following three-state LTS
(see figure 1):

1. In state UserPos1, the user is not in the neigh-
bourhood of any agent,

2. In state UserPos2, the user is in the neigh-
bourhood of the Karin agent,

3. In state UserPos3, the user is in the neigh-
bourhood of an information board (abbrevi-
ated with “ib”).

This rather minimal notion of position is all
that is necessary to model the user’s proximity
to the agents. Note that, despite the simplicity,
we have already specified something relevant: the
user cannot be both in the neighbourhood of Karin
and the information board at the same time. This
property may be used for instance to prevent
ambiguity when the user poses a question to an
agent.



UserPos1

UserPos2

UserPos3

userproxkarin

userproxib

usernoproxkarin

usernoproxib

useribclick

Figure 1: LTS specifying proximity relation

The state diagram also shows all possible tran-
sitions. The transitions are labeled by event
names: each transition corresponds to an occur-
rence of the event given by its label. For instance,
there is a transition from UserPos1 to UserPos2,
signifying an event userproxkarin where the
user moves into the neighbourhood of the Karin
agent. Note that the diagram also shows a tran-
sition labeled useribclick, which does not re-
sult in any state change. However, the fact that
useribclick is only possible in UserPos3 signi-
fies that this event is only enabled in this state.
So, a LTS can be viewed as a constraint specifi-
cation, constraining which events are possible in
what order.

A typical CSP system consists of a conjoinment
of many such LTSes. In terms of logic, this con-
joinment is a logical conjunction of a set of re-
quirements, i.e. all these requirements should be
satisfied. In terms of CSP, this is called the par-
allel composition of processes. This is in analogy
with parallel execution on parallel machines, but
this does not mean that the CSP process speci-
fications have to be mapped to a parallel imple-
mentation, as long as the implementation satisfies
the given constraints.

The LTS representation given here is graphi-
cal. Graphical representation is attractive, but
has some disadvantages:

• For large numbers of states, a diagram show-
ing all states does not provide much informa-
tion,

• Editing and automatic processing of textual
specifications is easier.

Therefore, we also use a textual representa-
tion of labeled transition systems, in the form of
CSP processes. The diagram above is represented
thus:

UserPos1 = (userproxkarin -> UserPos2)
[] (userproxib -> UserPos3),

UserPos2 = (usernoproxkarin -> UserPos1),

UserPos3 = (usernoproxib -> UserPos1)
[] (useribclick -> UserPos3)

In this simple specification, there is a direct
correspondence between the diagram and the
CSP text: each state corresponds to a so-called
process definition of the form X = Process,
where X is some process name, like UserPos1.
Process can have the form a → P , where a is
some transition label, and where P is itself an ex-
pression defining a process. This denotes the pro-
cess that first does action a and then behaves like
P . This construct is called the action prefixing.
Process may also have the form of a choice con-
struct P1beP2. For instance, (userproxkarin ->
UserPos2) [] (userproxib -> UserPos3), de-
notes a process that (initially) has the choice be-
tween a userproxkarin and a userproxib ac-
tion. As soon as one of these two actions occurs,
the choice has been made and the process behaves
like either UserPos2 or UserPos3.

In the example above, the action prefixing con-
struct is only used in the form a → X , where X
is some process name. In this case, the process
definitions have a one-to-one correspondence to
states in the LTS. However, any expression can
follow the action. For instance, we could replace
the fragment (userproxkarin -> UserPos2) by
(userproxkarin -> usernoproxkarin
-> UserPos1). In this case, the LTS has more
states than process definitions.

The parallel composition of processes P1 and
P2 is denoted by P1 ‖ P2. For example let us
consider (a sketch of) the Karin process:

Karin =
(userproxkarin -> openwindows ->

initkarin -> Karin)
[] (usernoproxkarin -> closewindows ->

exitkarin -> Karin)

This specification in isolation specifies two dis-
tinct sequences of actions, respectively following
a userproxkarin or a usernoproxkarin action.
Now, let us combine this with the UserPos1 pro-
cess into a system:
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Figure 2: CSP diagram of Karin and user

Vmc where

Vmc = UserPos1 || Karin

Parallel specifications may also be represented
in a graphical format, see figure 2. The figure
was automatically generated from the specifica-
tion with help of the daVinci graph layout pro-
gram. The parallel composition is represented by
a special || node, while the two subdiagrams rep-
resenting UserPos1 and Karin are regular LTS
diagrams.

The resulting system is constrained by the con-
straints of both processes. Each process only
places constraints on the actions that it actually
uses. So, the processes only influence each other
through those action labels that are shared by
these two processes. Here, the shared action la-
bels are userproxkarin and usernoproxkarin.
In terms of CSP, shared action labels may also
be called communication channels, and occur-
ring actions may be called signals . Shared ac-
tions may only occur when the two processes ex-
ecute it jointly. For instance, if one of the two
processes is in a state where an userproxkarin

(Karin,UserPos1)

(Karin2,UserPos2)

(Karin3,UserPos2)

(Karin,UserPos2)

(Karin4,UserPos1)

(Karin5,UserPos1)

initkarin

openwindows

userproxkarin

usernoproxkarin

exitkarin

userproxib

(Karin,UserPos3)

(Karin4,UserPos3)

(Karin5,UserPos3)

usernoproxib

userproxib

usernoproxib

userproxib

usernoproxib

closewindows closewindows

exitkarin

Figure 3: LTS of Karin and user

action is not enabled, then the action cannot
occur at that moment. For instance, after a
userproxkarin action, the UserPos1 process,
which has turned into a UserPos2 process, is able
to do a usernoproxkarin action. However, since
the Karin process does not enable it, the UserPos
process must wait at this moment. The Karin
process is now able to do an openwindows ac-
tion, followed by an initkarin action. These
two action can happen independently. That is,
the Karin process will execute these actions with-
out synchronization with the UserPos processes.
In all likelyhood though, there will be other pro-
cesses in the system as a whole, that at this
point will participate in the openwindows and
initkarin actions. After these two actions have
occurred, the Karin process is back at the ini-
tial state where a choice can be made between
the userproxkarin and the usernoproxkarin
actions. Here, the UserPos processes enforce that
the usernoproxkarin action will take place, since
the other action is disabled by the UserPos pro-
cesses. The possible actions of the two systems
combined may be modelled by a single big LTS,
see figure 3. Note that, when there are many
processes, such LTSes tend to become too large
to understand, though they are generally small
enough for exhaustive automatic verification.

There are two basic process terms in CSP that
finish the execution of a process: skip and stop.
The difference lies in what happens after the pro-



cess has finished. Termination by means of a stop
process denotes that all activity of the process
ceases. Termination by means of skip denotes
that a process that sequentially follows the cur-
rent stage is started. This is denoted by sequen-
tial composition of the form P1 ; P2, where P2

is started as soon as P1 terminates by execut-
ing skip. In practice, a sequence of actions like
(a1 → a2 → · · · → an → skip) is abbreviated as:
(a1 → a2 → · · · → an).

We introduce CSP operations for renaming and
for hiding actions from a process. As an example,
consider the following simple process that records
whether a certain door is open or closed:

Door = (open -> close -> Door)

Compare this with a very similar process which
specifies that the information board could be
switched on or off:

OperateIB = (on -> off -> OperateIB)

In fact, basic patterns like these occur many
times. An easy way of specifying them is to first
specify the underlying generic pattern, thus:

TwoStates = (a -> b -> TwoStates)

Then, one uses the renaming operator of the
form P [d/c], denoting that action c of process P
is renamed into d. In the example cases, we would
define:

Door = TwoStates[open/a,close/b]
OperateIB = TwoStates[on/a,off/b]

Actually, many software components that one
finds in for instance Java libararies for user inter-
faces can be specified by this sort of simple finite
state processes. A TwoState process as above
for instance corresponds directly to a (two-state)
knob on a user interface.

Finally we discuss the CSP hiding operation of
the form P\a. The semantics of the operation
is that all a actions inside process P are made
invisible from outside. Hiding can be used to hide
low-level details of a system that are deemed to
be of less importance. In general, hiding can be
used to create various views on a system.

For instance, actions like userproxkarin can
be considered low-level actions from the view-
point of the user interface, which we don’t want to
see. However, we do want to see the effect of these
actions, such as the fact that Karin’s windows and

the information board’s windows cannot be open
at the same time. This may be achieved by a
CSP term of the form VMC\userproxkarin. A
second example of a view is a focus on actions
related to the information board only, which is
achieved by hiding all actions not related to the
board.

We summarize the CSP language constructs in
the following table, which provides the grammar
of the language:

Processes
P ::= stop | skip | a→ P | X |
P1 be P2 | P1 ‖ P2 | P1 ; P2 | P [b/a] |
P\a | P where X1 = P1, . . . , Xn = Pn

Sequential composition, parallel composition,
and choice are all associative operations. This
means that we may specify, for instance, P1 ‖
P1 ‖ · · · ‖ Pn, without semantic ambiguity. Fi-
nally, we assume that parallel composition is an
operator with lower priority than choice, which
in turn has lower priority than sequential compo-
sition.

Most versions of CSP are more extensive than
this. Extensions usually include value passing
(data values may be passed from one process to
another through a channel) and guarded actions
(a guard is a Boolean function of data values,
which, if false, prevents a transition to occur).
Actually, these are just shorthand notations for
plain CSP definitions. Note that data passing is
generally not modelled when the data does not
influence the dynamics of the system: the pro-
cesses ‘go through the motions’ of passing data,
but no data is passed.

2.1 Execution and prototyping

The current executable version provides hand ex-
ecution, where the system can be stepped through
by hand. By adding some directives to the defini-
tion of each CSP process, specification of a map-
ping between CSP signals and user interface calls
or events may also be defined. This setup is sim-
ilar to the scenario proposed by [2].

The coupling between CSP and the interface is
as follows (see figure 4): a subset of the CSP pro-
cesses correspond to user interface (UI) compo-
nents. Within these processes, a subset of chan-
nels correspond to UI functions and events. The
user can be seen as an observing CSP process,
having as its alphabet the union set of all UI chan-
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Figure 4: Architecture

nels. A number of standard UI component types
are available, each having a set of standard func-
tions and user-generated events.

Direct dependencies between interface compo-
nents may also exist. For example, in the CSP
descriptions that follow, windows are assumed to
be independent, while in reality, they may ob-
scure each other. If a relatively complete formal
coverage is desired, we should show that these de-
pendencies do not lead to undesirable situations.
This can be done by describing a retrieve function
ρ : UI → CSP [39], which defines which concrete
(UI) state maps to which abstract (CSP) state.
This function should be total (i.e. all UI states
have a defined CSP state), and preferably surjec-
tive (each state that is possible in CSP should also
be possible in the UI). The surjectiveness is nec-
essary to guarantee that reachability properties
remain valid: otherwise, some states exist that
are reachable within the CSP specification, but
could never be reached through the UI.

In our example, we could assert totalness and
surjectiveness by proving that any window may
always be moved in such a way that all of its con-
tents are visible and that moving a window can
be done without generating unwanted signals, or
that windows are in fixed positions while not ob-
scuring each other. Note that this kind of spec-
ification is at a rather high level of detail. The
examples of interactor models usually found sim-
ply assume that windows are reachable.

The mapping between channels and UI func-
tionality may be defined by means of special di-
rectives, which are added to the declaration of
the processes that correspond to UI components.

The current notation is somewhat ad-hoc, but it
illustrates the general principle well. A list of
directives, placed between curly braces, may be
declared before the body of each process decla-
ration. Among the directives available are the
following:

type [<func>] component type
input {<chan>} channels from system

to user
output {<chan>} channels from user to

system
Within the <chan> directives, a list of channel

names may be defined, each of which is followed
by a body in which more directives may be placed.
These include the following:

receive [<func>] function to call when
signal occurs

init [<func>] function that sets up
an interface listener
which generates the
signal

Within the <func> directives, a UI function
with optional parameters may be supplied.

The prototyping system is implemented by
means of two communicating Unix processes: a
C program implementing the CSP engine, and a
Tcl process managing the user interface. The en-
gine communicates the set of possible transitions
that could occur given the current state (this set
is called the nextset), then the Tcl process com-
municates its choice back to the engine, etc. The
execution model is as follows: from all channels in
the nextset that do not correspond to user output
channels, one is randomly chosen. This amounts
to ‘flattening’ parallel execution into random se-
quential execution, which is an established model
[4]. If the channel corresponds to UI feedback,
the UI is updated accordingly. If only user output
channels remain, the user may generate signals by
manipulating the interface.

3 Example models

In this section, we discuss some of the potential
possibilities and problems of CSP as a modelling
language by means of examples. The examples
are centred around the VMC, which is a VE mod-
elled after the music centre building in Enschede.
The VMC project [34] is meant as a testbed for
research in experimental interaction, such as nat-
ural language, virtual reality, and multimodal in-
teraction. The project aims to be Web-based, i.e.
to be accessible through standard Web-browsing



tools. One of the agents in the VMC is a nat-
ural language dialogue system (originally called
Schisma), which can be queried for information
about performances, and which can handle reser-
vations.

The examples given here include parts of the
global system model, a technical design detail,
and a task model.

3.1 System model

In the model of the VMC specified here, we
have tried to include some of the most interest-
ing agents found in the real VMC. This includes
an information board, which displays information
about today’s performances. An attempt is also
made to specify the Schisma dialogue agent, in-
cluding its dialogue manager. The specification
leaves out the lowest level of detail: not specified
are mouse movement, the details of text input
and parsing, the navigation interface, and the de-
tails of appearance of VE objects, window dress-
ing, fonts, etc. The specification follows the ac-
tual implementation reasonably faithfully, though
modelling implementation details is not consid-
ered an objective of the specification. The sys-
tem consists of a number of agents, each of which
has a presence in the world. The Schisma sys-
tem (which is called Karin in the VE) is subdi-
vided further into a dialogue engine, some auxil-
iary user interface objects, and some communica-
tion buffers. See figure 5 for a system overview.

The processes at the top level are agents within
the VE. The User process also stands for the
user’s view and influence within the environment:
the user can move around, generating proximity
notification signals, to which the agents may re-
act. In case more users are added, they would ap-
pear in the specification as User objects. Within
the User process, the precise constraints on the
user’s influence are defined.

User {...} = UserPosN,

UserPosN =
(userproxkarin -> UserPosK)

[] (userproxib -> UserPosI)
[] (userproxdoorfront -> UserPosDF)
[] (userproxdoorinner -> UserPosDI),

UserPosK = (usernoproxkarin -> UserPosN),

UserPosI = (usernoproxib -> UserPosN),

UserPosDF =
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Figure 5: Overview of processes in the VMC
Graphical representation of the VMC process
declarations. The leaves of the tree contain the
state automata (not shown). Note that the com-
munication dependencies are not constrained by
the tree structure, but may be arbitrary.



(usernoproxdoorfront -> UserPosN),

UserPosDI =
(usernoproxdoorinner -> UserPosN)

From the system’s point of view, no more than
a few discrete positions are necessary to model
the user’s location: agents may be notified of the
user’s entering or leaving their proximity, mod-
elled as userprox... and usernoprox... sig-
nals. The user starts in front of the building,
which corresponds to UserPosN. In this specific
case, the agents are all at a sufficiently large dis-
tance from each other, so that the user can never
be near two objects at the same time. User has
only five positions, one for each agent s/he can
be near, and one in which no agent is near.

Constraints such as these have to be specified if
we require surjectiveness of the retrieve function:
by specifying precisely where all agents may go,
we can be sure the specification corresponds pre-
cisely to all possible situations. The question re-
mains how such constraints could be specified in
more general cases, for example in VEs in which
the agents are able to move or a more involved
notification scheme is used.

The Karin agent consists of Karin’s manifes-
tation in the world (KarinObj), Karin’s dialogue
manager (KarinEngine), a number of buffers for
communicating with other processes, and a cou-
ple of windows used for communicating with the
user. The user can also reinitialise Karin using a
reset button, and Karin can display query results
in a table. The four buffers are needed for multi-
way communication: there are several processes
that communicate with KarinEngine, but do not
communicate with each other. If these would all
try to talk with KarinEngine over the same chan-
nels, all processes would be forced to synchronise
their communication. The buffer implementation
allows each process to write data independently,
and even overwrite the data of another before
KarinEngine could have read it: some data may
be lost due to concurrent access. Note that the
same problem was found in the real VMC while
specifying, and is made explicit by the specifica-
tion. If this data loss is not considered acceptable,
the buffers could be made to block multiple con-
secutive writes, and deadlock conditions resulting
from blocked buffers could be detected and elim-
inated.

The process KarinObj defines the presence of
Karin and Karin’s reaction to the proximity of
the user.

KarinObj {
type [object(350,150,"karin.gif")]
output{
userproxkarin {init[setprox()] }
usernoproxkarin {init[setnoprox()] }

}
}
= (userproxkarin -> openwindows

-> initkarin1 -> KarinObj)
[] (usernoproxkarin -> closewindows

-> exitkarin1 -> KarinObj)

The UI directives define that KarinObj is a
VE object, and set up interface listeners that
generate the proximity signals userproxkarin
and usernoproxkarin when the user approaches
or leaves. The process reacts to these signals
by respectively setting up or closing down the
dialogue manager and the windows. Note the
‘1’ in initkarin1 and exitkarin1: this means
that the process wants to signal initkarin and
exitkarin to the dialogue manager, but the sig-
nal is buffered (in this case, through MergeInit
and MergeExit). Other processes should signal
their init and exit signals through other channels,
named ...karin2 etc.

The processes ChatLine, TextFrame and
Table are windows, which have two main states,
...Open and ...Closed. Only in the ...Open
state may the window display information and ac-
cept user input. As an example the Table-process
is given:

Table {
type [window]
input{
usertableopen { receive [open()] }
usertableclose { receive [close()] }
usertablerefresh {

receive [showtext("Table filled")]
}

}
output{ userclick {

init [createbutton("click")]
} }

} = TableClosed,

TableClosed =
(opentable -> usertableopen ->

TableOpen)
[] (closetable -> TableClosed),

TableOpen =
(opentable -> usertablerefresh ->

TableOpen)



[] (closetable -> usertableclose ->
TableClosed)

[] (userclick -> textout2_perftime ->
TableOpen)

The table lists performances, which can be
clicked on to select a performance. The infor-
mation that should be displayed in the table is
always supplied through the opentable chan-
nel. A user click results in a buffered signal
textout2 perftime to the dialogue engine, com-
municating the information that specifies that
performance.

The bulk of Karin’s behaviour is specified in
KarinEngine. The engine consists of the dialogue
manager, starting at MgrInit, and some variables
for keeping track of dialogue context. The dia-
logue manager is a simplified model, though it
contains the main principles: keeping track of di-
alogue context by means of data obtained from
previous utterances, and the manager itself is es-
sentially state-based.

KarinEngine = MgrInit
|| ContextElem_genre
|| ContextElem_perf
|| ContextElem_time,

MgrInit = (initkarin -> textin_hello ->
MgrClear),

MgrClear = (delperf -> deltime ->
delgenre -> MgrWait),

MgrExit =
(exitkarin -> closetable -> MgrInit),

MgrWait =
(textout_genre -> addgenre ->

delperf -> MgrAnswTable)
[](textout_perf -> addperf -> MgrPerf)
[](textout_time -> addtime -> MgrTime)
[](textout_perftime -> addperf ->

addtime -> MgrAnswInfo)
[](textout_book -> closetable ->

MgrBook)
[](textout_yes -> textin_error ->

MgrWait)
[](textout_no -> textin_error ->

MgrWait)
[] MgrExit,

MgrPerf = (gottime -> MgrAnswInfo)
[] (nogottime -> MgrAnswTable),

MgrTime = (gotperf -> MgrAnswInfo)
[] (nogotperf -> MgrAnswTable),

MgrAnswInfo =
(textin_tellinfo -> MgrWait),

MgrAnswTable = (textin_telltable ->
opentable -> MgrWait),

After some initiating actions, the dialogue
manager arrives at MgrWait. This is the state
in which Karin accepts input from the user, and
reacts to it by providing information. There are
two kinds of information: detailed information
about one specific performance, or a list of per-
formances. In this simplified model, it is assumed
that a performance is fully specified by supply-
ing both a performance name (textout perf)
and a time (textout time). A list of perfor-
mances can also be obtained by supplying a genre
(textout genre). The rest of the states are for
determining what to answer. In case a query re-
sults in a list, the table is opened to display it.
When the user wishes to book for a performance
(textout book), the manager goes into a sepa-
rate booking mode MgrBook (not shown), which
is analogous to MgrWait. The manager returns
back to MgrWait when a performance has been
specified and confirmed, or the booking is can-
celled, or the user makes an irrelevant utterance.

Specification of the dialogue manager in sim-
ple CSP is somewhat verbose, but it is feasible to
describe the complete dialogue manager this way,
preferably aided by some shorthand notations for
managing the context variables. This dialogue
manager is finite-state (a finite-state automaton,
having a set of pre-programmed states and tran-
sitions) rather than plan-based (taking actions on
the basis of a hierarchy of goals and plans, cre-
ated by a ‘planning’ engine) [24]. However, it may
also be possible to describe plan-based dialogue
managers in CSP. This could be done by mod-
elling plans as processes, and defining each plan
as a parallel composition of sub-plans, which is
analogous to the task model found in section 3.3.
Plans may also be defined recursively, just like
tasks in a CSP task model [29].

In our opinion, this kind of specification has
been useful for describing the system up to an in-
teresting level of detail, and for uncovering con-
currency issues: apart from the buffering prob-
lem, some other small bugs in the real VMC were
found while specifying. For example, the user
could select from an empty table, resulting in
a nonsense reaction, and the reset button has a



strange effect when clicked while Karin is still pro-
cessing.

A VMC “prototype” can also be generated eas-
ily, with help of the (still limited) UI component
library. See figure 6 and figure 7 for a comparison
of the prototype with the real system. The navi-
gation screen shows an overhead 2D map, rather
than first-person 3D. The user, indicated by the
label “userobj”, can be moved around. If the user
comes close to an agent, a separate window is
opened, which shows a detail view of the agent.
Instead of querying Karin by means of text input,
the user can select his/her query by selecting from
a column of buttons, each standing for one type
of information that can be entered as text in the
real VMC. Even though it is still very simple, the
prototype could for example be used to examine
visibility and layout issues, and get an idea of the
system’s “feel”.

3.2 Detailed description of mul-

timodal output

This section illustrates how more detailed and
technical design issues could be discussed using
the language. In the new version of the VMC,
Karin’s output is not limited to text. Speech and
mouth movement are added, which have to be
synchronised. To do this, the text is first con-
verted to phonemes and speech. The speech is
played as an audio sample, and each successive
phoneme is converted to mouth animation while
the sample is playing. The system is shown in
figure 8.
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Figure 8: Speech-face system

The system is internet-browser-based, which

means there are some serious technical con-
straints, as will become clear below. The text-to-
speech program is running on a separate machine:

Server = (sentence -> texttospeech
-> Server)

[] (loadaudio -> Server)
[] (loadphonemes -> Server)

First, a sentence is sent to the server
(sentence), which is then converted to speech
and phonemes (texttospeech), which can
then be downloaded by the client separately
(loadaudio and loadphonemes).

The standard animation player component can
be described as follows:

PlayAnim = (playanim
-> startanim -> queuestartanim
-> endanim -> queueendanim
-> PlayAnim)

When giving the command to start playing
(playanim), the animation starts (startanim, an
internal event). This is then notified to a separate
Queue process through a signal queuestartanim.
Queue then enables a signal notifystartanim to
be read once by other processes. The end of the
animation (endanim) is similarly notified through
queueendanim.

The audio player component might have had
exactly the same structure as PlayAnim. How-
ever, a bug was discovered which causes the
player to behave badly when a new sample is
loaded while the old one is still playing. In other
words, the audio player somehow participates in
loading samples, and any attempt to load new
samples while it is still playing results in unde-
sirable behaviour (in the following specification,
deadlock).

PlayAudio = (loadaudio
-> ( PlayAudio

[] (playaudio
-> startaudio
-> queuestartaudio
-> endaudio
-> queueendaudio
-> PlayAudio)

) )

The technique currently used to synchronise
these processes is as follows:

Integrate = (sentence -> loadphonemes



Figure 6: The real VMC

This screengrab shows the user talking to Karin. The user has just entered a date in the text entry field
(the white bar on the right), and Karin replies (top right) with help of a table (bottom).

Figure 7: Generated VMC prototype

This screengrab shows the same situation as figure 6. At the top left is the navigation window, top right
is Karin’s reply, middle right is the text entry window, bottom left is Karin’s detail view.



-> loadaudio -> playaudio
-> IntVisWait),

IntVisWait = (notifystartaudio
-> IntVisPlay),

IntVisPlay =
(playanim -> notifyendanim

-> IntVisPlay)
[] (endvisemelist -> IntVisTerm),

IntVisTerm = (notifyendaudio
-> Integrate)

However, the time between playanim and
notifyendanim turned out to be longer than the
specified viseme duration, resulting in a cumula-
tive buildup of delay. The first proposed solution
was to split the samples into smaller parts. How-
ever, the delay between sentence and playaudio
(the downloading turns out to be slow) causes
unacceptable delay between the samples. It is
not possible to load the next sample while the
current one is playing either, because of the bug
in PlayAudio. A limited solution would be to
react on notifyendaudio immediately to stop
the mouth early. The solution currently im-
plemented is to measure time immediately after
notifystartaudio, and to calibrate the duration
of successive visemes according to the time that
really elapsed as opposed to the viseme duration
specified.

3.3 Task analysis

CSP can be used for specifying task hierarchies
similar to basic forms of HTA reasonably natu-
rally: each task and subtask may be specified as
a process, and each basic operation may be spec-
ified as a channel. Loops and interleaving tasks
could also be described easily. The task model
can be tested with the system by parallel com-
position with the system. CSP also has some in-
teresting possibilities for modelling more detailed
cognitive aspects, such as task performance and
memory load, as in task modelling languages like
GOMS [16] and ETAG [14]. We list some of the
possibilities here.

• In GOMS and ETAG, short-term memory is
modelled as a goal stack, containing a list of
all goals and subgoals currently being consid-
ered by the user. These may also contain pa-
rameters needed to perform the task. In CSP,
this may be modelled by the processes cur-

rently running. In extensions of CSP with
value passing, the parameters may be mod-
elled by the values bound by each process.

• In GOMS and ETAG, choice between alter-
native possible strategies is done by means of
selection rules. These rules specify whether
which action should be taken by means of a
Boolean function of the user’s memory, or,
possibly, of the system’s feedback. Choice in
basic CSP is simply by the choice operator,
which could model both types of choice. CSP
extensions with value passing generally allow
choice to be made using an arbitrary Boolean
expression as well.

• ETAG also specifies a domain model, describ-
ing the objects in the task domain, and their
relations. In a CSP model, this roughly corre-
sponds to the relation between channels and
processes, and between different processes in
the system model. However, no arbitrary
inter-object relations may be described.

• Extensions of GOMS, such as EPIC [25], also
enable highly detailed cognitive performance
prediction, using a model of concurrent cog-
nitive subsystems or critical path analysis for
tasks that can be done simultaneously. This
is especially interesting for modelling the ef-
fect of multimodality on user tasks. In CSP,
tasks that may be interleaved can be described
quite naturally by means of parallel composi-
tion. Cognitive subsystems may also be mod-
elled by describing them as separate CSP pro-
cesses. Real-time extensions of CSP [9] also
enable specification of durations, which could
be used for critical path analysis.

Here, we give an example of a task model. Note
that the task is only one example of the tasks that
a user may be trying to achieve with the VMC
system. In this task, the user wishes to go to the
theatre today, and is trying to select a suitable
play. It is assumed that the information needed
to select the play can only be obtained from the
information board or by asking Karin for details
about the performance. The task hierarchy is as
follows:

Goal = Query ; Book,

Query = QueryIB [] QueryKarin,

QueryIB = GotoIB ; GetInfoIB,



QueryKarin =
GotoKarin ; GetPerfList ; QueryEachPerf,

QueryEachPerf =
SpecifyPerf ; QueryEPRead ;
( (seemore -> QueryEachPerf)
[] (seenenough -> skip) ),

Book = ( (GotoKarin ; PerformBook)
[] (PerformBook) )

; Confirm

PerformBook =
(SpecifyBook ; SpecifyPerf)

[] (SpecifyPerf ; SpecifyBook),

The goal consists of two subgoals: obtain
the information (Query) and book for the play
(Book). At this level of specification, there are
several choices available to the user: in Query,
s/he can query the information board (QueryIB)
or Karin (QueryKarin); in PerformBook, s/he
can first specify that s/he wants to book, and
then specify which play to book, or do it the
other way round. When querying details in
QueryEachPerf, the user repeats the subtasks
until s/he has seen enough, which is determined
by the channels seemore and seenenough, which
are internal to the user. When trying to book, it
is possible that the user is still at the information
board and has to walk to Karin first. The feed-
back from the system can be used to determine
which one is applicable. Note that two tasks oc-
cur at different places, namely SpecifyPerf and
GotoKarin. The following bottom-level tasks ex-
ist for the information board:

GotoIB = GotoIB2
[] (usernoproxkarin -> GotoIB2),

GotoIB2 = (userproxib -> skip),

GetInfoIB = (useribclick
-> useribshowinfo -> skip),

Note that the navigation task GotoIB is versa-
tile: the user will arrive at the information board
regardless of where s/he is, by reacting to sys-
tem feedback. The query information is obtained
by receiving the signal useribshowinfo. If the
user were not interested in this information, s/he
could simply choose to ignore the signal. The
bottom-level tasks for Karin are:

GotoKarin =
GotoKarin2

[] (usernoproxib -> GotoKarin2),
GotoKarin2 = (userproxkarin -> skip),

GetPerfList = (usertyped_time
-> usertableopen -> skip),

SpecifyPerf =
(userclick -> skip)

[] (usertyped_perftime -> skip),

QueryEPRead =
(usershowtext_tellinfo -> skip),

SpecifyBook = (usertyped_book -> skip),

Confirm = (usershowtext_confirm
-> usertyped_yes
-> usershowtext_done -> skip),

GotoKarin is analogous to GotoIB; the
other tasks are mostly obvious. Note that,
when querying Karin for specific performances
(QueryEachPerf), the user can obtain specific de-
tails either by clicking on the performances table
(userclick) or by keying in a specification of the
play (usertyped perftime). In case the table is
not open (this happens when the user has chosen
to query the information board and is now try-
ing to book), the system feedback will simply not
allow the former option.

A weakness of the current model is that the
user can only observe system feedback by seeing
that certain output channels are enabled, or by
catching input signals as they are generated. In
some cases, for example when a task model re-
quires re-reading an answer given by Karin, chan-
nels for re-reading the display should be added to
the system model. For example, for each window
process, different states should be added that dis-
tinguish the different texts being displayed at any
particular moment, and an extra channel should
be added for each state that enables the user to
read that particular text. While designing the
system model, such channels were never consid-
ered, because they are not meaningful from a sys-
tems designer’s point of view: the system is not
concerned with what happens with information
after the command is given to display it. It is not
even possible to detect when or if the user reads
any message displayed. These extra signals could
be modelled by means of variables (see below).



3.4 future research

By means of examples, we have indicated that
CSP is interesting as a central specification lan-
guage for various aspects of the development pro-
cess. From here onwards, several strands of re-
search may be identified:

1. Investigating the possibilities of specifying hi-
erarchical task models and plan-based dia-
logue models using process algebra. Appar-
ently there is little research on this subject,
though some examples of task models are
emerging in the literature [29] [31]. However,
a serious large-scale or systematic coverage
seems to be lacking.

2. Extending the programming environment to
include a more complete coverage of user in-
terface functionality. The possibility of in-
voking arbitrary software modules from CSP,
such as parsers and speech generators, is also
attractive. Taken to its fullest extent, this
means that CSP could be used as a cen-
tral ‘glue’ language, glueing together separate
modules, while keeping the architectural de-
pendencies explicit, making software mainte-
nance and experimentation easier.

This could be done by an annotation scheme
similar to the ‘UI directive’ scheme explained
here. Apart from a less ad-hoc notation, this
scheme could use a redesign: restrictions to
the communication scope of the channels de-
fined in the directives should be defined in a
meaningful way, and a value passing scheme
should be added.

3. Developing or adopting language extensions,
shorthand notations, and verification tools
that are particularly useful for VE develop-
ment. The most basic ones are variables
and value passing, enabling a shorter notation
for some parts of the specification. System
feedback through persistent modalities, as ex-
plained in the example of re-reading window
contents in section 3.3, could also be modelled
by means of variables. For example, a variable
could stand for the state of a window, and is
directly accessible by the user.

Further extensions are interesting for VE de-
velopment in particular. The ability to create
multiple instances of one process is interesting
for modelling multi-user systems. Real-time
extensions are interesting for analysing cogni-
tive performance in multimodal systems.

4. An interesting possibility, not yet mentioned,
is automatic user data analysis in terms of the
CSP signals. The sequence and duration of
the signals that occur during interaction could
easily be logged and analysed. This could
also be useful for obtaining data for cognitive
performance prediction, as is done in GOMS
models.
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[8] Gaëlle Calvary, Joëlle Coutaz, and Laurence
Nigay. From single-user architectural de-
sign to PAC*: a generic software architec-
ture model for CSCW. In CHI ’97, 1997.

[9] Zhou Chaochen, C. A. R. Hoare, and A. P.
Ravn. A calculus of durations. Information
processing letter, 40(5), 1991.
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