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1 Introduction

This deliverable presents the results of the validation phase of the Credo project
for the two case studies ASK and BSN. Starting point for this validation is the
set of final models for both case studies presented earlier in Deliverable D6.3.
Throughout the validation phase, three different tool sets have been used, each
with a different modeling language in scope:

e The Eclipse Coordination Tools (ECT) and Vereofy for simulating and
validating Reo circuits and (Constraint) Automata models

e The Creol (CreolE) Tool Set and Eclipse Plugin and the Creol Testing
Tools for simulating and validating Creol models

e The UPPAAL Tool and VerifyTA for simulating and validating Timed
Automata models

Outline

Sections 2 and 3 of this deliverable are devoted to the ASK case study and the
BSN case study, respectively. In each section, we start with a brief overview
of the case study, followed by the validation results for each of the tool sets
mentioned above. We conclude each section with a quantitative evaluation
providing statistics about the validated properties and performance of the tools,
an overview of the original requirements on the Credo modeling language and
tools, an indication if and how these original requirements are met, and lessons
learnt throughout the validation phase of the project.

Live-CD

Deliverable D6.4 and its annexes can be found on the latest version of the Credo
Live-CD. The Live-CD also contains all other project deliverables, the (updated)
final models, and the tools and documentation necessary to view, simulate, and
validate the models.

1Because of licensing restrictions, the UPPAAL and VerifyTA tools are not available on
the Credo Live-CD.



2 Case study 1: The ASK System

Within the ASK case study, the validation phase serves three purposes. First,
by validation we are able to validate, correct and improve the final models of
Deliverable D6.3. Second, validation allows us to assess properties by which
we can improve the implementation of the ASK system. Improving the actual
software of ASK is beyond the scope of the Credo project, but we will explain
throughout the discussion of the validation results how we think we can use
the validation results in the future for this purpose. Third, by using the Credo
validation tools, we directly assess the quality and usefulness of these tools.

2.1 Overview of the ASK Case Study

In the ASK Case Study, we created several types of models of various parts of the
ASK system (For a detailed overview of the ASK System itself, see Deliverable
D6.3 Section 2). We splitted the final modeling effort for the case study into
three “subprojects” ReASK, CreASK and tASK.

In the ReASK project, which builds upon the initial modeling presented
earlier in Deliverable D6.2, we have focused on modeling the ASK system in
terms of a REO network at various levels of abstraction. At the lowest level of
abstraction, we modeled the components in terms of automata, which resemble
the initial model of ASK. In the validation phase, the REO networks (circuits)
and automata have been validated with the ECT tools and the Vereofy tool.
The results are presented in Section 2.2.1.

In the CreASK project, we have focused on a specific part of the ASK core
system, namely the thread-pools, which are present in each of the components
of the system. For this part, we created Creol models to analyze functional
properties. We performed several simulations and validations of these models
with the Creol tools, the Creol eclipse plugin and the Creol testing tool set. An
overview of the validation results is given in Section 2.2.2.

Finally, in the tASK project, we have used the Creol models of the thread-
pools as a basis for timed automata models. We used these models to assess
the schedulability of a particular amount of tasks with strict deadlines and
inter-arrival times, given a thread-pool with certain dimensions, by using the
UPPAAL and VerifyTA tools. Section 2.2.3 is devoted to the results of this
validation.

2.2 Validation of the Final Models

We discuss the validation for the models of the three projects ReASK, CreASK
and tASK in three separate sections.



2.2.1 ReASK: Validation of the REO Models of ASK

For the ASK case study, a model covering the control and message flow of the
ASK system with its hierarchical layers has been developed. It consists of au-
tomata for each component on the lowest layer, and Reo circuits composing
the upper thread, process, system, and context layers (see Deliverable D6.3 and
Annex D6.3.2). The model is parameterized in many ways, e.g., queue sizes and
the number of monks used within the abbeys of ASK. The version we mainly
dealt with in the model checking phase consists of 328 component instances and
channels (63 different types) from which 73 constitute the scheduler process,
38 the matcher process, 40 the reception process, and 141 the resource man-
ager process. The remaining channels form the coordinating network. The full
Vereofy representation of our model in RSL and CARML (see Deliverable D5.3
and Annex D5.3.1) uses 393 boolean variables to encode the state space of the
composite system. The number of reachable states of the processes which we
could build in full detail reaches a magnitude of up to 10'° states. The total
number of dataflow locations was 1007 and for encoding of the data values at
each location 11 boolean variables (for 290 distinct message values) were used.

Five sub-components interacting with each other form the ASK contact en-
gine. The complex communication between the reception, matcher, executer,
scheduler, and resource manager as well as their coordination is completely rep-
resented in the Vereofy model. This inherent complexity of the model, together
with the heavy dependency on the data values of the transferred messages, made
formal verification a challenging task. Subsequent optimizations of the model
checker provided significant improvements in the ability to handle such complex
systems, allowing the handling in full detail up to the process layer.

We were able to use Vereofy to verify (and falsify) various properties and
find different kinds of errors in the model, like wrongly ordered messages, dead-
locks, missing robustness features, incorrectness of assumptions for simplifica-
tions, etc., which could then be analyzed with the help of the counterexamples
created by Vereofy and fixed in the model. For components on the process, sys-
tem, context level we did a pre-computation of a good BDD (Binary Decision
Diagram) variable ordering to start the model checking with a compact repre-
sentation of the model. These computations took only minutes for most of the
components. Only for a few complex components we had to spend some hours
on this. With this pre-computation it was possible to compose systems within
only a few seconds and perform model checking within minutes.

While model checking of the fully detailed model for the two (most complex)
top layers was currently out of reach due to the complexity of the model, it
was possible to use Vereofy to simulate the whole model by generating random
execution traces with stepwise, iterative building (Deliverable D5.6).



The key techniques to deal with the complexity of system and context layer
within the model checker were abstraction of the data domain, replacing com-
ponent specifications by simpler ones with equivalent I/O-behaviour or generic
components with non-deterministic behavior, and techniques for creating better
variable orderings supported by the latest version of Vereofy. Applying them to
the ASK system allowed us to check some safety properties as well as the qual-
ity and robustness of the underlying coordination and communication structures
and mechanisms for the contact engine of ASK.

In the following we give some examples of results in the model checking
phase for the ASK case study. A detailed list including all relevant properties
checked for the ASK case study can be found in Annex D6.4.5.

o Missing task creation in the initial phase of the Scheduler Monk: while
checking the correctness of the order of incoming tasks and outgoing re-
quests we found that the main process of the scheduler never created the
necessary initial tasks to produce the necessary initial request.

e Robustness of monks: we used lossy filter channels for routing incoming
tasks of a monk to its responsible sub-process. At the same time, a token
was consumed from a buffer (finished buffer), which should be restored
once the sub-process finished working on the task, thus allowing a new
task to be accepted. When unknown task types arrived, the token was
consumed and the task rejected, i.e. lost. The token was thus never
restored by any of the sub-processes, as none of them became active.
The monk was not robust for faulty task messages. The fix replaced the
lossy filters by blocking variants and the standard Reo nodes by route
nodes to ensure exclusive task forwarding. After applying the fix onto all
monk structures, we were able to remove another structural problem in
the reception and matcher monk which was a consequence of replacing the
node by a route node.

o Simplification of monks: in the final model we had a finished buffer for
each sub-process in the monks. Assuming that only one process should
be active at time, there would be no need for more than one buffer and
thus a simpler monk implementation having only one buffer cell would still
be sufficient. We first showed that our assumption is correct, i.e., that it
was never the case that the buffers stored more than one token. After
replacing the monks by simpler ones we were able to show bisimilarity for
the original and simplified monk.

e Errors in the hashtable implementation for Connectoid Warehouse: the
hashtable specification was given in terms of an automaton, which was
then one-to-one translated into a CARML module. Due to the very regular
structure of the automaton, the modeling involved a lot of copy-and-paste
operations. We found all mistakes caused by wrong copy-and-paste opera-
tions, by implementing another module having the hashtable functionality
and checking for bisimilarity of the two implementations and showing that
both model the hashtable specification properties.



All models, verified properties and deliverables can be found on the Credo Live-
CD.

2.2.2 CreASK: Validation of Creol Models of ASK Thread-Pools

For the modeling activity using the Creol language, it was decided to create a
behavioral model of the thread pool (abbey) functionality contained in the ASK
system (see Deliverable D6.3 and Annex D6.3.1). This particular component
was chosen mainly for three reasons. First, different parts of the ASK system
contain their own implementations of thread pools, with similar but slightly
different semantics. It was expected that the modeling activity would help in
finding, enumerating and understanding the various thread pool implementa-
tions in the existing code base. Second, the thread pool component possesses
a clean interface, with well-defined functionality and communication patterns
with the rest of the system. Third, the model was expected to be suitably dif-
ferent to the BSN case study so as to yield different results, and be amenable
to different analysis methods.

All these assumptions proved to be correct; various thread pools were suc-
cessfully modelled in Creol and used by other work packages to good effect.
Low-level and high-level (abstract) models of constant-sized (dabbey) and self-
balancing (sabbey) thread pools were used to simulate the system’s behavior,
generate test inputs, and validate the ASK system’s behavior.

Simulation was used during the creation of the models to gain understanding
about language semantics and available tools, and to validate the correctness of
the model’s behavior. As such, simulation was done in an ad-hoc way, more for
demonstration purposes than for generation of further results.

The Creol models of the ASK thread pools were extensively used in Work
Package 5 in the Testing activity, which resulted in a number of methods and
tools (and publications as well). The two most important approaches are con-
colic execution and passive trace-based testing.

e We developed a way of using dynamic symbolic execution (also known as
concolic execution) to generate an exhaustive set of test inputs from a
specification. The approach was implemented on top of the Creol inter-
preter using the YICES SMT solver and validated against the thread pool
model. This approach is described in Deliverable D5.5.

e To generate test cases and test the behavior of the existing ASK system
against its Creol model, we developed a method for passive trace-based
testing. In brief, the behavior of the ASK system is logged (using aspect-
oriented programming), the resulting logs are converted to Creol models
of the real system’s behavior, and the modeled behavior is replayed using
the Creol model as a test oracle. The approach is described in Deliverables
D5.2 and D5.5. The test case generator tool implementing the generation
and execution of test cases using this method was implemented as part of
the Creol plug-in for the Eclipse integrated development environment.



All models, validation results and deliverables can be found on the Credo Live-
CD.

2.2.3 tASK: Validation of UPPAAL Models of ASK Thread-Pools

For the schedulability analysis of the ASK system, we modeled the dabbey vari-
ant of the ASK thread pools. This variant has a fixed number of monks (threads)
and a fixed-size task buffer. The details of the UPPAAL models corresponding
to the dabbey can be found in Annex D6.4.4. The Dabbey is modeled in a flex-
ible way such that by adjusting the following parameters, one can experiment
with different settings of the abbey:

e The first thing one can change is the number of monks for the modeled
abbey. By increasing the number of parallel monks, one can perform tasks
faster. This means that smaller deadlines and inter-arrival times can be
used.

e In order to perform experiments, the deadline and inter-arrival values can
be changed in order to get the right value for schedulability.

e Furthermore, one can change the number of different task types.

In order to compare the schedulability of tasks for different numbers of monks
and different inter-arrival times, we created a script to automatically invoke
the schedulability analysis for different parameter values using the UPPAAL
command-line verifier. The output of the script can be plotted in a 3D plane.
An example is given in Figure 1. In this example, the number of different tasks
is 9, while their computation times are defined as {8,9,9, 10,10, 10,11,11,12}.
On the Z-axis of the plot, the minimum possible deadline for the tasks to be
schedulable can be read, for different amounts of monks in the abbey and dif-
ferent inter-arrival times. Several conclusions can be drawn from this diagram,
like:

e For the given set of task types, abbeys with size 6, 7, 8 and 9 perform
equally well.

e For the given set of task types, if we allow less strict deadlines for the
tasks, the minimum inter arrival times for abbeys with size 1, 2 or 5 can
be improved.

e For the given set of task types, an abbey with 2 monks (minimum IAT 5,
corresponding minimum deadline 13) performs more than twice as good
as an abbey with 1 monk (minimum IAT 10, corresponding minimum
deadline 14).

Such interesting results can be applied by Almende in the near future to improve
the performance of the abbeys in the ASK system.

All models, validation outputs (plots) and deliverables can be found on the
Credo Live-CD.



min. Deadline

#Monks

Figure 1: Schedulability analysis results for Dabbey with different numbers of
monks and inter-arrival times.

2.3 Assessment of Initial Requirements
Overview of Assessment Scenarios

As we formulated in the addendum of Deliverable D6.1, our intentions with the
ASK Case Study were twofold: to use it as an assessment of the project results,
their quality and applicability in a real-life industrial setting, and to provide
with it a basis for exploitation of the project results during the future develop-
ment and maintenance of the ASK system. At that time of writing, Almende
recognized three future developments on ASK relevant in the context of the
Credo project: scalability of ASK, integration of multiple ASK instances, and
personalization of ASK, of which the focus in Credo would be on the improve-
ment of the scalability of ASK. We quote from the addendum to D6.1: “The
focus of the “ASK CS” case study is on modeling, analyzing and implement-
ing these scalability issues.” At the beginning of the project, we identified four
scenarios:

e SC.1: better exploitation of meta-information within ASK
e SC.2: optimization of local task scheduling strategies
e SC.3: optimized distribution of the ASK components

e SC.4: distributed replication of the ASK components
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Throughout the project, these initial scenarios have been partially addressed,
partially replaced by other scenarios, as follows. Scenario SC.1 was the subject
of the initial modeling. Scenario SC.2 has been addressed in the final modeling
and validation: subproject tASK, using UPPAAL and timed automata. Scenario
SC.3 has been indirectly addressed in subproject reASK, which built upon the
insights gained throughout the initial modeling effort on SC.1, but extended the
modeling effort for the small first scenario to a holistic modeling effort for the
entire core of the ASK system. Finally, SC.4 was replaced, prior to the start
of the final modeling phase, by a scenario focusing on the thread-pools in the
ASK System (subproject CreASK). This was done because the latter scenario
was expected to better cover the set of tools developed in the case study.

Overview of Initial Requirements

In the Addendum on Deliverable D6.1, we formulated the following requirement
categories:

1. Credo should support the modeling of ASK structure, ASK behavior, lo-
cation and time;

2. Credo should support the modeling of constraints on time, memory size
and network bandwidth;

3. It must be possible to verify functional properties of a reconfigurable sys-
tem based on a Credo model created for it;

4. Tt must be possible to verify non-functional properties of a reconfigurable
system based on a Credo model created for it;

5. The Credo tools must be applicable to individual components as well as
compositions of components;

6. The Credo tools must provide ways to (semi-)automatically create models
based on source code of the ASK system;

7. The Credo tools must be able to verify non-functional properties at run-
time;

8. The Credo tools must provide information about functional and non-
functional properties in an attractive visual manner;

Categories 1, 2, 5, 6 and 8 were covered by the final modeling. The assessment
of requirement categories 3, 4 and 7 is considered to be part of this validation
deliverable. However, for this document to be self-contained, we repeat the
conclusions with regard to the requirement categories covered during the final
modeling.

11



Assessment of the Results compared with the Initial Expectations

RC1. As we already concluded in our report on the Initial Modeling (Deliv-
erable D6.2), Credo supports the modeling of structural and behavioral aspects
of software systems, as well as of timing aspects. Location as such can not be
explicitly represented in any of the Credo modeling languages.

RC2. Constraints on time can be modeled and analyzed in the UPPAAL tool.
However, the Credo tools are less suited for modeling constraints on memory
size or network bandwidth.

RC3. Functional properties, especially those mentioned as need to have in
the addendum of Deliverable D6.1 (i.e., system provides the same functionality
in different distributions, changing internals of a component has impact on its
interface, a request cannot disappear in a certain system configuration) can be
assessed with the Credo tools both for the networks (Reo, Vereofy, property
verification) as well as for the components (Creol, Creol tools, simulation and
testing techniques). We consider the multitude of ways to verify functional prop-
erties as a very strong aspect of the Credo tool suite. The Credo methodology
provides some (but not yet sufficient) insight into which way of modeling and
verification should be used for which kind of functional property.

RC4. A large part of the non-functional properties mentioned as need to have
in the addendum of Deliverable D6.1 (i.e., a task can(not) be performed in a
certain amount of time, an amount of tasks can(not) be performed within a time
window, a request can(not) be handled in a certain amount of time, an amount
of requests can(not) be handled within a time window) can indeed be verified
with the Credo tools. The UPPAAL and VerifyTA tool and timed automata
are very well suited for the verification of timing properties like the above. The
schedulability analysis technique, developed in the context of the Credo project,
covers precisely the aspects necessary for reasoning about the most important
non-functionals for ASK. Other properties, dealing with memory or network
bandwidth, are not addressed by the Credo tools.

RC5. The compositionality of especially REO makes the Credo language ap-
plicable to individual components as well as component compositions.

RC6. Credo definitely does not support (semi-)automatic creation of models
based on source code of ASK, a requirement we considered as a necessity for
broader adoption of the Credo tool suite, but which proved to be infeasible
within the resource and time limits of the Credo project.

RC7. Given the regular execution times for property verification, this nice to
have requirement is not yet met by the Credo tools.
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RCS8. Finally, the attractive visual manner in which models can be represented
was not per se within scope.

2.4 Quantitative Evaluation

Table 1 shows statistics for the RSL/CARML model of the ASK system, as used
by the Vereofy model checker, giving information about the different parts and
levels of the ASK system model that were verified.

The first column of the table shows the number of boolean BDD variables
used to encode the system. The next column shows the time spent to calculate
a suitable variable ordering for the system. After such a variable ordering is
calculated, it can be reused, with the next column showing the time spent to
build a symbolic representation of the system using the previously calculated
variable ordering. The next column shows the number of BDD nodes used for the
symbolic representation of the transition function (generally the most complex
part) of the system. For the systems at the Thread level of the ASK model,
the default variable ordering generated by Vereofy already yields an efficient
symbolic representation, so that the separate step of generating an optimized
variable ordering was unnecessary and could be skipped.

The next three columns then show the number of temporal logic properties
(see Appendix D6.4.5 for details) checked for the given systems and the aver-
age and maximum runtime of the model checker used to verify or falsify the
properties.

For some of the systems, minor variants were also considered (e.g., using
lossy filters vs. blocking filters in the coordination patterns). As these variants
have very similar size and run times, we display these systems in aggregate
and report the variable order generation time, build time and BDD size for the
biggest of the variants.

The ResourceManager is built data-abstract, i.e., abstracting from the con-
crete message values flowing in the system. The Black Box ASK system is an
abstracted version of the global ASK model with generic sub-components with
non-deterministic behavior, allowing the verification of the top-level coordina-
tion patterns.

All computations were performed on a AMD Athlon 64 X2 Dual Core Pro-
cessor 5000+ (2.6 GHz) with 8GB of RAM, running Ubuntu Linux.

Table 2 shows statistics for the verification of bisimulation equivalence be-
tween parts of the ASK model using Vereofy. We checked the correctness of
simplifications of the coordination circuitry in the Monks, as well as the equiv-
alence of two different implementations of the Connectoid Warehouse.

2.5 Lessons Learnt and Conclusion

The subprojects within the validation phase of the Credo project have gained
the following insights:

13



System BDD Varorder | Build | System size | Prop. Verification
vars. | gen. time time | BDD nodes | count avg. | max.
Thread level
SchedulerMonk(1) 241 - 2.3s 18,634 15 0.05s 0.1s
SchedulerMonk simplified (1) 215 - 1.8s 10,479 5 0.06s 0.1s
SchedulerMain 30 - 1.3s 158 6 0.01s 0.02
MatcherMonk 135 - 1.4s 2,294 17 0.01s 0.03s
ReceptionMonk 145 - 1.4s 1,863 18 0.01s 0.02s
ResourceManagerMonk(1) 327 - 3.0s 22,157 15 0.1s 0.2s
UNIXPipelines 29 - 1.3s 193 2 0.01s 0.01s
HappinessValue 26 - 1.3s 33 4 0.01s 0.01s
ConnectoidWarehouse 28 - 1.3s 204 8 0.01s 0.01s
Process level
Scheduler 494 1,375.0s 15s 68,487 16 2.1s 8.6s
Matcher 274 54.0s 1.3s 9,562 25 0.07s 0.3s
Executer 54 0.5s 1.3s 87 3 0.01s 0.01s
Reception 284 58.0s 4.3s 6,248 19 0.07s 0.4s
Resource Manager 849 3,258.0s 56s 458,199 18 | 276.4s | 4,891.0s
Global level
Black Box ASK [ 406 [ 1,225.0s [ 4.3s | 269,360 [ 13 ] 0.9s | 1.8s

Table 1: System instances verified using Vereofy, with information about size,
properties and run-time information.

[ System 1 ] System 2 [ Bisimulation check time ]
SchedulerMonk (1) SchedulerMonk _simplified (1) 60s
ResourceManagerMonk(1) | ResourceManagerMonk simplified(1) 319s
ConnectoidWarehouse ConnectoidWarehouse_verbose 0.1s

Table 2: Bisimulation checking of components in the ASK system.
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ReASK. The modeling of ASK with RSL and CARML for the purpose of val-
idation, based on the REO circuits and automata of the final modeling phase,
was a straightforward activity, especially due to Vereofy’s ability to deal with
the model at several levels of abstraction and the compositional and hierar-
chical nature of the modeling languages. The support for complex structured
data domains allows the modeling of complex messages and message dependent
coordination between the components.

In Deliverable D6.3, we concluded that the version of the Eclipse REO editor
at that time did not adequately support top-down modeling as we did in this
subproject. Furthermore, conversion to CARML and RSL for verification with
Vereofy needed to be done completely manually. These omissions have been
taken into account by the tool developers through the addition of techniques for
embedding high-level component specifications in top-level circuits which can
be refined in a later stage, and tools to generate CARML/RSL from Reo cir-
cuits and the other way around. Sufficient validation of these new possibilities,
however, could not be performed.

CreASK. Various techniques have been developed for the simulation, valida-
tion and testing of Creol models. We consider all techniques developed thus
far (concolic execution, passive trace-based testing) as promising: earlier (pub-
lished) experiments in the project showed the benefits of applying these tech-
niques, in that they already yielded various flaws in the Creol models developed
during the final modeling phase. More methodological support is needed to
help the end user in determining which technique should be applied for which
purpose. The passive trace-based testing technique will be further evaluated by
Almende in the context of its general development activities.

tASK. As we concluded in the assessment of requirement RC.4, the UP-
PAAL and VerifyTA tool are very well suited for the verification of all kinds
of timing properties, while the schedulability analysis technique covers precisely
the aspects necessary for reasoning about the most important non-functionals
for ASK. Almende and CWI will probably continue the further automation of
property verification with the command line tool VerifyTA — the insights gained
thus far in the dimensioning of thread-pools in ASK are already considered valu-
able, and a lot more is to be expected from the technique and tools. Almende
will in the near future concretely apply the insights in new test implementations
of the ASK system.

3 Case study 2: Biomedical sensor networks

3.1 Overview of the BSN Case Study

Based on the generic architecture of a biomedical sensor network (BSN) pre-
sented in previous deliverables D6.1, D6.1 Addendum, and D6.2, we modelled
several aspects and levels of detail using the Credo tools: Creol (including
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several extensions), UPPAAL, and Vereofy, following the Credo Methodology
Document [?]. The different final models (I) to (VIII) and their properties are
presented in Deliverable D6.3. We chose the AODV routing algorithm as the
main subject for our evaluations.? In this document, we give an overview of
the validation of these models. We compared the results from the evaluation
with known results from the real world and other evaluations of the AODV
algorithm.

We used the following categories® to structure the validation work:  (a)
techniques, (b) perspectives, (c) arrangements, and (d) properties. In this con-
text, techniques describe technical measures and procedures to perform the eval-
uation of a model’s properties. Perspectives describe the scope of an evaluation,
such as (1) observing the behaviour of the entire network configuration, or (2)
observing the behaviour of one node. An arrangement denotes a set of settings
that has an influence of how the model operates; such as using communication
failures, timed model, timeouts, energy consumption, and so on.

Functional properties are concrete conditions that can be checked for given
arrangements. For our AODV models we have defined a set of properties that
we use in the validation process:  (A) correct-operation; (B) loop-freeness;
(C) single-sensor challenge-response properties; (D) shortest-path; (E) deadlock-
freeness (both, for node, and for protocol); (F) and miscellaneous composed
system properties. See Annex D6.4.2 [?] for a detailed description of these
properties, as well as Annex D6.4.3 and Table 3.

3.2 Validation of the Final Models

We validated the timed automata model (I), the Creol AODV model (V), and
the flooding and AODV models in Vereofy (VII) and (VIII). Most aspects of the
other models from Deliverable D6.3 have been integrated into the Creol Model
(V), and can be studied there. For a description of Case Study 2, and the final
models see Deliverables D6.1, D6.1 Addendum, and D6.3.

3.2.1 Timed automata models of BSN (I).

We modelled message-forwarding in a BSN using timed automata [?], where
the sensor nodes communicate using the Chipcon CC2420 transceiver and the
IEEE 802.15.4 standard. Based on the model, we have used UPPAAL to val-
idate and tune the temporal configuration parameters of a BSN to meet QoS
requirements on network connectivity, packet delivery ratio and end-to-end de-
lay. The network studied allows dynamic re-configuration of network topology
due to the switching of sensor nodes to power-down mode for energy-saving or
their physical movements. Both the UPPAAL simulator and model-checker are
used to analyse the average-case and worst-case behaviours.

2We refer to Deliverable D6.3 and Annex D6.3.3 for further information on AODV and the
different models.
3The categories (a) to (d) are explained in Annex D6.4.2.
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Property Description Model
@O [ (v) | (vimm)

[ (A) | Correct Operation [n/a]yes [n/a |

l (B) ‘ Loop-Freeness ‘ n/a ‘ yes ‘ n/a ‘
(C) Sgl-sensor challenge-resp.
(C).(1) Always send with own ID n/a | yes | yes
(C).(i1) msg leads to valid route n/a | yes | yes
(C).(ii1) RREQ w/o route==RREQ bc. | n/a | yes | yes
(C).(iv) RREQ for me leads to RREP | n/a | yes | yes
(©).(v RREP triggers route to origi- | n/a | yes yes

nator

(C).(vi) RREP is rebroadcasted n/a | yes | yes
(C).(vii) send iff route known n/a | yes | yes
(C).(viii) routing table integrity n/a | n/a | yes
(C).(ix) all msg for sink n/a | yes | yes
(C).(x) processing without receive n/a | yes yes
(C).(x1) increasing sequence number n/a | yes yes
(C).(xii) neighbour update triggers n/a | n/a | yes
(C).(xiii) updates terminate n/a | yes | yes
(C).(xiv) update success n/a | yes | yes
(C).(xvi) Rec. in IDLE only n/a | n/a | yes

| (D) [ Shortest-Path [ n/a [ yes [ n/a ‘
(E) Deadlock-Freeness
(E).(xvil) node deadlock n/a | no yes
(E).(xviii) | protocol deadlock n/a | yes | yes
(E).(xix) model deadlock n/a | yes | yes
(F) Misc. Composed-System
(F).(xx) route stays valid n/a | yes | yes
(F).(xxi) only data msg n/a | poss | yes
(F).(xxii) NoRERR n/a | yes | yes
(F).(xxiii) no useless RREQ n/a | poss | yes
(F).(xxiv) | RREQ triggers RREP n/a | poss | yes
(F).(xxv) # rec. msg. yes | yes | n/a
(F).(xxvi) packet loss yves | yes | n/a
(F).(xxvii) | timing yes | part | n/a
(F).(xxviil) | network connectivity yes | yes | n/a
(F).(xxix) QoS properties yes | part | n/a

Table 3: Properties evaluated in Case Study 2. Fields marked with “n/a” denote
properties that are not applicable; “poss” means that evaluations are possible
but were not performed; “part” means that this property only can be partially
evaluated.
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)

Figure 2: The network used as example in our simulations.

Experiments showed that this model can be used for efficient simulation
and parameter tuning. The properties used to validate this model include dy-
namic network topologies (F).(xxviii), tuning and verification of QoS prop-
erties (F).(xxix), the absence of deadlocks (E).(xviii), network connectivity
(F).(xxviii), and packet delivery ratio (F).(xxv) and (F).(xxvi). Note that Model
(I) does not implement flooding nor AODV, and cannot be compared with the
other models with respect to functionality. The validation details of Model (I)
are shown in Annex D6.2.3 of Deliverable D6.2 [?].

3.2.2 Creol Model of AODV (V).

Model (V) [?] of the AODV algorithm for BSN needed an extension to the Creol
language, which lead to the definition of CreolE (Extended Creol) [?] shown in
Annex D6.4.1. The updated model (V) now integrates both flooding and AODV
into one model, including aspects of Models (II), (III), (IV), and (VI). Below,
we briefly describe the validation of Model (V); a more detailed version can be
found in Annex D6.4.2.

We introduced the dimensions of techniques, perspectives, configurations, and
properties for this evaluation. The functional properties used for this evalua-
tion were divided into five property classes (A) to (F). All these properties
are aligned with the properties used to evaluate the Vereofy tool [?] for a later
comparison. We performed network simulations of the composed system, and
component testing of a single node in order to evaluate these functional prop-
erties. Different properties are suited for simulation and component testing.

For our evaluation of the properties we simulated using techniques such as
auxiliary variables, and assertions. Most of our experiments used a network
via symmetrical communication with four sensor nodes and one sink node, as
shown in Figure 2. We simulated the AODV model using various configurations
in order to validate the model for different situations. We looked at reliable
networks, lossy networks, timeouts, energy consumption, and timed modelling.
We checked selected properties from classes (A), (B), (D), (E), and (F) that are
suited for simulating the composed network. We present some of the evaluations
below.

Reliable communication: As long as the network is connected?, the evalu-

4We also simulated networks that are not connected, which behaved as expected.
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ations showed that the modelled AODV algorithm fulfils the properties
(A), (B), (D), (E), and (F). We emphasised on the evaluation of packet
loss (F).(xxvi), and loop-freeness assertion (B). Other predicates for loop-
freeness were also used®, and small, faulty changes in the model were
introduced (which led to expected failures of Property (B)). The shortest
path property (D) was fulfilled in all simulated occasions.

Lossy communication: When simulating lossy communication, both for sin-
glecast and for broadcast messages the packet loss ratio (F).(xxvi) in-
creased as expected. We also could observe an increased number of RREQ
and RREP messages in the system, using auxiliary variables. The shortest
path property (D) was fulfilled in all simulated occasions.

In one occasion we could observe that the loop-freeness property (B) was
not fulfilled using lossy communication. However, we have not yet inves-
tigated the reason of this failure. We have saved the configuration for
further investigation, and the state stored in the Maude file.

Re-sending lost messages with timeouts: The model allows to configure
re-sending of lost RREQ messages up to a certain number of times, using
a timeout mechanism. We could observe that this mechanism decreased
the packet loss ratio (F).(xxvi), but at the same time we can state that
this mechanism does not avoid all packet loss.

Energy consumption: Using the energy consumption configuration we can
force a communication failure of certain nodes after some actions. Using
this configuration we can study the re-routing behaviour in detail. We also
studied the packet loss ratio (F).(xxvi) for configurations where nodes fail
due to energy consumption.

Timed model: Using the timed model we can study the number of time steps
needed for sending messages, as well as controlling the number of actions
being performed simultaneously. We observed that the packet loss ratio
(F).(xxvi) is different from the untimed case. This behaviour is expected.

Using the timed model we could observe a model deadlock (E).(xix), which
is caused by the way the model is implemented, and certain limitations of
the current implementation of the Creol runtime system. This observation
made changes in the model implementation necessary using asynchronous
method calls.

We did not evaluate the properties (F).(xxi), (F).(xxiii), and (F).(xxiv),
since it is necessary to store all messages during the simulation. However, such
a configuration will lead to a high number of states (state explosion).

To evaluate the single-sensor properties (C), we employed component testing,
where the network is replaced by a test harness, and only one node under test is

5These predicates were designed to fail in order to have examples of predicates that are
supposed to fail. The Creol tools behaved as expected.
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used. This evaluation is performed by studying the output messages of a node
when given input messages are applied. Communication between nodes happens
always through the interfaces of the network object that in turn communicates
with other nodes. Through these interfaces, messages are sent to the node under
test, and the reactions from this node are investigated.

A test verdict is reached by running the test harness in parallel with the ob-
ject under test. A test verdict of Success is reached if the test harness completes
the test case and the object under test conforms to the tester’s expectations in
all cases. If the test harness deadlocks, it expects a message from the object un-
der test that is not arriving a test verdict of Fail is reached. The other reason for
test failure is an incoming message that does not conform to the expectations of
the test harness; e.g. by being of the wrong type or having the wrong content.

In addition to domain-specific single-object properties that have to be tested,
test cases can be generated using Model (VIII) and the Vereofy tool. In this case
traces received from the node under test are tested against message patterns,
i.e. we abstract away from details that could lead to spurious test failures not
expressing a malfunctioning system. The property is checked using an invariant
in the tester, but a different concrete message number than that used by the
Vereofy model cannot lead to test failure. No tool support was implemented
for this test technique yet, but since Vereofy traces contain all the needed in-
formation to simulate an environment for the node under test, implementation
is considered to be straightforward.

3.2.3 Flooding (VII) and AODYV in Vereofy (VIII).

For the Case Study 2 we were able to successfully model two variants of commu-
nication protocols used in the context of the biomedical sensor networks. In the
early project stage, a variant of a flooding protocol covering possible dynamics
in the network topology was specified with the help of CARML and RSL. For
this model we were able to compose and verify network structures having more
than 10 sensor nodes.

In the second stage, the AODV protocol became the object of our inves-
tigations for all partners. Modelling this required complex messages to cover
all the necessary information that has to be transmitted between the individ-
ual sensor nodes, as well as highly complex CARML specifications of the sensor
nodes themselves, with routing table storage, complex rules for the correct main-
tenance of the routing table information and necessary message handling and
generation. A detailed description of the Vereofy models for flooding and AODV
can be found in D.6.3.

Although CARML and RSL were designed to specify coordination aspects
and inter-process communication, it was still possible to model the needed com-
putation features with the help of Vereofy’s input languages. Moreover, we were
able to find errors in the model, fix them and show functional correctness prop-
erties of the protocol implementation for a single sensor node and for simple
network structures. For the later is was helpful to apply abstraction and simpli-
fication methods to create simpler variants of the model (D5.6), with less data
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dependencies, where the significant properties of the routing protocol are still
holding. E.g., for static network topologies the freshness of routing information
has no bearing on the decision if and when routing tables should be updated.
Using iterative building techniques® (D5.6) we were able to create random traces
for larger network structures to be explored by the user.

While working with the model, we encountered misbehaviour and bugs in the
model. We list some of them below. A detailed list of properties, including the
ones mentioned above, can be found in Annex D6.4.3 (Properties for Validation
of Case Study 2), as well as in Table 3.

1. RREP messages were not correctly forwarded: we figured out that RREP
messages were not forwarded in the right direction. Instead of forwarding
them they were sent back to the originator of the reply. Thus, no routes
longer than a single hop were computed correctly.

2. Repeating RREQ messages may flood the network and lead to a protocol
deadlock: The original protocol contains a timeout for RREQ messages.
They are re-sent when they receive no answer in time. We had to remove
this in our time-abstract model to avoid flooding the network with RREQ
messages and blocking all other communication. We found this problem
while looking for possible deadlock situations.

3. Whenever a link failure to a neighbour occurred the route for this node
was marked invalid, but other routes, which use this dead node as a next
hop, were not marked as invalid. Thus, messages could be addressed to
dead nodes, causing new link failures. The new update procedure works
recursively on the routing table and ensures this property.

For checking properties of network structures with a few sensor nodes we pre-
computed variable orderings to benefit from preferably compact BDD represen-
tation of the system behavior. The pre-computation itself consumed a few hours
and the system composition afterwards was then possible to be done within
minutes. With an increasing number of sensor nodes, more BDD-variables are
needed for encoding the addresses inside of messages, as well as message buffers,
and the routing table of each node. Table 4 illustrates how many BDD-variables
would be needed for the encoding of a) a single data item, b) the states of a
single sensor node, and c) the states of the composite system. At the end of
the project, we now are able to compose and verify AODV network structures
with up to three nodes with a state space of about 1022 reachable states, which
is quite a success for a new tool. Handling larger numbers of sensor nodes is
still possible, but will require further development and optimisation, e.g., of
abstraction techniques and the BDD-representations, in the future.

6The transition function is not build for all possible configurations of the system, but only
for a subset or a single state. Consecutively applied, first for an initial state and then for
randomly chosen successors, leads to a random trace of the system.
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boolean variables | AODV 2 | AODV_ 3 | AODV_4 | AODV 5
data values 15 18 20 23
sensor node states 58 74 91 111
system states 116 222 364 555

Table 4: Number of boolean variables needed for the encoding in the Vereofy
model of AODV

Required Need to have Nice to have Dropped
properties
(o) Timing Max/Min end-to- | Average end-to- | Channel  access
end delay end delay delay, propaga-
tion delay
(8)  Network Max/Min/Average
throughput throughput
(v) Packet de- | Requirements on | Average end-to-
livery ratio packet  delivery | end ratio
ratio
(6) Network | Network  dead- | Network Bottle-
connectivity lock, isolated | neck
node
(¢) Energy con- Node and network
sumption lifetime
©) Memory | Buffer overflow | Memory con-
and Buffer possibility sumption
(n)  Wireless | Collision possibil- | Channel access | Channel efficien-
channel ity failure, average | cy/deviation
bit error rate
(6) Mobility Validation of | Impact on delay,
routing proto- | throughput, and
cols and local | packet  delivery
topology changes | ratio
(¢) Interference | Concurrent trans- Environmental in-
mitting terference, ther-
mal noise

Table 5: Required properties and priorities

3.3 Assessment of Initial Requirements

Deliverable D6.1 Addendum lists eight elements to define the scenario. Over
the course of the project the scenario has become more abstract. In addition,
the focus for our work has moved from the overall case to investigate the AODV
routing algorithm.

The table of required properties and their priorities has been given in Deliv-
erable D6.1 Addendum. We repeat the table of properties in Table 5, and the
requirements («) to (¢) are listed and marked with priorities.
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Max t Msg loss Timeout | #Creol | #Maude # time

steps Energy behaviour | behaviour lines lines rewrites (ms)
500 X none never 1579 1026 9 444 821 17 123
5000 X none never 1579 1026 | 62 841 821 | 114 808
500 x | every 10th never 1593 1035 | 10 709 994 19 552

500 x | every 10th | every 10th 1601 1039 | 12 112 216 22 311
untimed 50 | every 10th | every 10th 1587 1011 | 11 647 148 17 969
500 50 | every 10th | every 10th 1636 1058 8 305 408 15 548

Table 6: Table showing code size and run-time for the tested cases with 5 nodes.

The Credo-tools are suited to evaluate the existence and non-existence of
certain properties. To a lesser extent they can count events, and find mini-
mum/maximum values of properties. In simulation mode, e.g., using a Monte-
Carlo-type setup with many simulations, averages can be computed.

In Model (I), which implements forwarding of messages on a lower network
layer, certain aspects of the following required properties are implemented: tim-
ing («), network throughput () (to a certain extent), packet delivery ratio (7),
network connectivity (), collision in wireless channels (1), and interference for
concurrent transmissions (¢).

In Model (V), the following required properties are implemented: timing ()
(to a minor extent), packet delivery ratio (), network connectivity (§), aspects
of energy consumption (¢), aspects of memory and buffer consumption (¢), and
the effect of topology changes (#). Some aspects of collision possibilities () and
concurrent transmissions (¢) can also be evaluated, but to a lesser extent than
originally desired.

In Model (VIII), the purely functional properties for network connectivity
(9), buffer overflow possibility (¢), and topology changes () have been verified.

3.4 Quantitative Evaluation

In the following we outline the sizes and dimensions used in the Case Study 2,
and the aspects and properties checked, as well as indications to runtime and
type of machines.

For Model (V) we show code size, run-time, and rewrites for an AODV
model of five nodes in Table 6. We varied the number of time-steps, the energy
consumption, and the message loss behaviour. All diversifications are contained
in one large model of about 1700 lines of CreolE. Note that the size difference
between these diversifications is rather neglectable. For each of the cases we
measured the size of the resulting compiled artefacts in Creol and Maude, re-
spectively. We also recorded the number of rewrites and the execution time on
a desktop PC with an AMD Athlon 64 Dual core processor with 1.8 GHz.

We also experimented with varying the number of nodes. We measured
32484226 rewrites (14868ms)7 for five nodes, and 90468655 rewrites (40978ms)

"These measurements were performed on a computer with an Intel Core2 Duo CPU E8400
with 3 GHz.
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System BDD Varorder | Build | System size | Prop. Verification

vars. | gen. time time | BDD nodes | count avg. [ max.
Sensor Node(1,k)

k=2 106 10.2s 0.9s 5,739 27 10.4s 67s

k=3 131 44.0s 1.4s 26,598 17 87.6s 163.0s

k = 3, no Fix2 134 51.0s 1.4s 21,513 2 | 521.5s 536.0s
Network (k Nodes)

k=2 212 253.0s 5.6s 233,619 21 1.94s 7.3s

k = 2, buffered 240 2,001.0s 9.8s 629, 559 1 2.1s 2.1s

k = 2, buf., no Fix1 238 1,481.0s | 10.1s 816,450 1 23.0s 23.0s

k = 3, abstr. 242 | 15,300.0s 4.7s 2,129,780 3 | 909.0s | 2,304.0s

Table 7: System instances verified using Vereofy, with information about size,
properties and run-time information.

for six nodes for an untimed model, about 10% packet loss without timeout
behaviour. However, when varying the settings, e.g., we introduce the timeout
behaviour, we could observe that in some cases the run-time for six nodes is
much less than for five nodes. While this might sound strange, this can be
explained that rather small changes in topology can have a substantial impact
on the behaviour of the algorithm.

Table 7 shows statistics for the RSL/CARML model of the AODV protocol,
Model (VIII), as used by the Vereofy model checker. The first part deals with
verification of the individual sensor nodes (with identifier 1) in the context of a
network of k sensor nodes, i.e. with a routing table for k£ nodes. The second part
deals with networks of k£ connected sensor nodes. In addition to the standard
models, some variants are considered for certain properties. “Buffered” denotes
networks where there is additional buffering of the messages flowing through the
network. The two systems with “no Fix” refer to variants of the model where
certain bugs are still present which were fixed using the verification results.
In the case of the 3 nodes network, some abstractions are applied, i.e. to the
handling of sequence numbers and link failures.

The first column of the table shows the number of boolean BDD variables
used to encode the system. The next column shows the time spent to calculate
a suitable variable ordering for the system. After such a variable ordering is
calculated, it can be reused, with the next column showing the time spent to
build a symbolic representation of the system using the previously calculated
variable ordering. The next column shows the number of BDD nodes used
for the symbolic representation of the transition function (generally the most
complex part) of the system.

The next three columns then show the number of temporal logic properties
(see Technical Annex D6.4.3 for details) checked for the given systems and the
average and maximum runtime of the model checker used to verify or falsify the
properties.

All computations were performed on a AMD Athlon 64 X2 Dual Core Pro-
cessor 5000+ (2.6 GHz) with 8GB of RAM, running Ubuntu Linux.
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3.5 Lessons Learnt and Conclusion

The Credo tools based on Creol (CreolE), Vereofy, and UPPAAL offer different
ways of modelling, supporting different techniques, perspectives, arrangements
and evaluation of properties. After validating forwarding in a wireless sensor
network modelled in Model (I) in regard to QoS properties, loss rate, and param-
eter tuning, we decided to evaluate the functional aspects of routing algorithms;
we selected the well-known AODV algorithm for this task.

Using the network simulation of Model (V), several arrangements were eval-
uated, where most of the properties hold as expected. In some occasions, we
found properties that did not hold in the simulation, either due to bugs in the
model, properties of the modelled AODV algorithm, artificially introduced bugs
in the code, or property variants that are not supposed to validate success-
fully. In one occasion we could detect deadlocks in the model in a timed-model
arrangement. This problem could be recognised and fixed later on.

Using component testing of the Creol model of a single sensor node, we
validated the model’s behaviour with respect to properties important for the
correct functioning of the AODV algorithm. We created a test driver simulating
a network environment and a method of abstracting away parts of messages
for the purpose of reaching a test verdict. No incorrect behaviour of the node
model was identified during single-object testing, which was not surprising since
the model had already been extensively exercised during model creation and
initial simulation experiments. The resulting test suite served well for regression
testing during further modification and enhancements of the model.

We modelled a highly distributed application with many autonomously act-
ing objects (sensor nodes). While evaluating the properties of the AODV algo-
rithm, we encountered several challenges, including modelling a suitable abstrac-
tion, using suitable language constructs of Creol, and observing the properties
from a suitable perspective. The major challenge when evaluating the AODV
algorithm form a network perspective is to avoid a high number of states (state
explosion) in the underlying interpreter. We see that the properties suitable for
component testing are disjunct from the properties suitable for network simu-
lation. Therefore, these techniques are complementary to each other.

Using the inter-process communication features of CARML and RSL we were
able to model both flooding and AODV. Using Vereofy we were able to detect
errors in the model, fix them, and show the functional correctness properties
of the protocol implementation for a single sensor node and simple network
structures. Using iterative building techniques, we were able to create random
traces for larger network structures, and provide some traces for the component
testing of Model (V).

We found the Credo languages and tools useful in the evaluation of the
AODYV algorithm, and in order to get insight into how complex algorithms like
AODV work. We observed that small changes in the algorithm, and in chosen
arrangements imply changes in its behaviour. We also detected the breach of
certain properties, that will lead to further investigation of this misbehaviour,
its removal and, eventually, to a better understanding of AODV and other
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algorithms used for sensor networks.
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Technical Annexes
This document contains the following technical annexes:

D6.4.1: This technical annex|[?] gives an overview of the CreolE language,
an extended version of the Creol language based on best practices gained
during the Credo project.

D6.4.2: In this technical annex|[?], the validation of a Creol model of AODV is
performed by evaluating functional properties using simulation and com-
ponent testing. The annex also explains the categories (techniques, per-
spectives, arrangements and properties) which have been used to structure

the validation phase of Case Study 2 (BSN).

D6.4.3: This technical annex lists all the properties used in the validation of
Case Study 2 (BSN) with Vereofy.

D6.4.4: In this technical annex, a detailed description of the models used for
the schedulability analysis performed in case study 1 (ASK) is given.

D6.4.5: This technical annex lists all the properties used in the validation of
Case Study 1 (ASK) with Vereofy.

D6.4.6: In this technical annex, an update is given of the final models (Reo
networks and automata) of the ASK system, based upon the results of the
validation phase.
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