Alternating-Time Stream Logic for Multi-Agent Systems

Sascha Kluppelholz, Christel Bafer

Technische Universitat Dresden, Institut fir Theo@tésInformatik, Germany
{klueppel,baigy@tcs.inf.tu-dresden.de

Abstract. Constraint automata have been introduced to provide a csitigpeal,
operational semantics for the exogenous coordinationui@mg Reo, but they
can also serve interface specification for components ar@parational model
for other coordination languages. Constraint automata Heeen used as basis
for equivalence checking and model checking temporal &gicoperties. The
main contribution of this paper is to reason about the lodalvvand interac-
tion and cooperation facilities of individual componentscoalitions of compo-
nents by means of a multi-player semantics for constratoraata. We introduce
a temporal logic framework that combines classical featafealternating-time
logic (ATL) for concurrent games with special operators to specifptiservable
data flow at the I/O-ports of components. Since constraitdraata support any
kind of synchronous and asynchronous peer-to-peer conuaiom, the result-
ing game structure is non-standard and requires a seriesivial adaptations
of the ATL model checking algorithm.

1 Introduction

In the last decade several models and specification lang@i@ag®rmal reasoning about
the middle-ware layer of software have been developed. Somidination models con-
sist of ad-hoc libraries of functions providing higheréginter-process communication
support in parallel and especially distributed applicagiorhey aim at a clean separa-
tion between individual software components and theiradgons within their overall
software organization. Our approach is inspired by the dioation language Reo [2],
which provides theglue-codeto coordinate components in an exogenous manner. In
this paper we use constraint automata, which have beerdintedl as an operational
semantics for Reo [6]. Constraint automata provide a spatidin formalism for both,
the glue-code (e.g. given as a (Reo) network, or anothen(miegbased) coordination
mechanism) and the behavioral interfaces of componerds;amserve to formalize the
overall behavior of the composite system. Constraint aatarcapture any kind of syn-
chronous and asynchronous peer-to-peer communicatituding data-dependencies
of I/0-operations. The syntax of constraint automata islaino ordinary labeled tran-
sition systems and related models, such as timed port atedft, I/O-automata [20],
and interface automata [10]. The differences are mainlgdas the fact that constraint
automata support any kind of channel-based communicatiomextensive discussion
on the differences and similarities can be found in [6].

* The authors are supported by the DFG-NWO project SYANCO hadEU project CREDO.

The purpose of this paper is to provide a multi-agent serosifdi constraint automata
and an alternating-time temporal logic to specify and vettie components consid-
ered as individual players of a multi-agent game. The caiedecomponents are the
individual players and the network sets up the rules howehmayers interact with
each other. The glue-code might be seen as a complex setiaf koes [13, 24] the
players have to stick to. Constraint automata, interpratechulti-player game struc-
tures, are a special type of concurrent games. The specélt=nges of an alternating
time approach are caused by the very special mixture of &sgng and synchrony,
mutual dependencies of 1/0-operations and data-depeiederic each state, several
concurrent 1/0-operations can be enabled, but only sombeshtmight be available
once a player refuses some synchronization or declarestiomsdon the data values
accepted on his input ports or on his pending write operatiBarthermore, constraint
automata can contain some internal nondeterminism, whields/a rather complex
and nonstandard concurrent game structure. We are not afvany other paper that
treats alternating-time aspects for such concurrent gawteere the enabledness and
also the effect of a concurrent I/O-operation highly deamuthe choices of the other
players. Our approach allows us to check whether or not s@aktion of agents has
a strategy to achieve a common goal, no matter how the opg®behave, or which
internal nondeterministic choices were made. In contmastandard concurrent games,
see e.g. [1, 9], in our approach a coalition’s strategy méscssets of 1/0-operations
or even refuse any 1/0O-operations.

For specifying and analyzing the local views and interacfiossibilities of (coalitions
of) agents, we introduce an alternating-time logic, cal#tdrnating-time stream logic
(ASD. The logicASLis aCTL-like branching-time logic which combines the features of
standardATL [1] with the operators oBTSL[18]. The logicBTSLhas been introduced
as a temporal logic for reasoning about (Reo) networks.d@gbie standard modalities
of CTL[8], BTSLsupports the specification of the observable data flow at@wports

of channels and components by means of regular expres$iomfocus ofATL s to ask
for the existence (and absence) of a coalition’s strate@ckoeve (avoid respectively)
a specific temporal goal once the behavior for each of the oomqts is specified.

For a simple example, we regard a ticket vending machinegiwtnnsists of a number
of components (e.dg/O-device, clock, destination, price, payment, and gintThe
exact behavior of the components might be specified in tefnesmstraint automata.
ASLcan be used to formalize the property stating that the usess{ply together with
some other component like tlséock) can find a way to trick the other players and get a
ticket without paying. A duahSLproperty would state that no matter what strategy the
opponents use, the coalition of opponents will not have ach#o avoid that sending
thecancelsignal always resets all components to their initial configion.

As a first step we assunperfect recallon the systems history amerfect informa-
tion on the global state of the system. This interpretation ostamt automata as a
multi-player game is consistent with the standard semaofidTL and adequate if the
strategies are viewed as a central control that is aware at@ities in the system.

Our approach differs from oth&TL-like approaches for concurrent multi-player games
in various aspects. First, our nonstandard game structerdxplanations above) re-
quires a revised notion of strategies for (coalitions ofppenents. Second, since com-

ponents may refuse any further interaction from some mowmerthe concept of finite
runs and fairness plays a crucial role in the Io§8L To reason about liveness proper-
ties we need an adaption of the standard notion of strongégsg) fairness. Our notion
of fairness is not a requirement for strategies, but fornealthe ability of certain strate-
gies of a component to enforce infinite data flow at the I/O-ports Gf Third, ASL
provides special operators to reason about the observatadldw at the 1/O-ports of
the components and the nodes of the given network. To thebest knowledge, such
operators have not yet been investigated in the contexterfating-time game models.

Organization. Section 2 gives a brief introduction to constraint autometaection 3
we provide the multi-player semantics for constraint awttanand introduce the notion
of a strategy and its runs. Section 4 introduces the tempogéd ASL and presents
corresponding model checking algorithms. Section 5 intoed fairness assumptions
to ASLmodel checking, before section 6 concludes the paper. Aeneed technical
report including the proofs and other technical materiahvigilable on the web [19].

2 Constraint Automata (CA)

This section summarizes the main concepts of CA. We slighgjyart from the syntax
of CA as introduced in [6] and deal with transitions= p, wherec is a concurrent
I/O-operation i.e.,c consists of a (possibly empty) node-detC N together with data
items for eaclA € N that are written or received at node In the moment where is
executed there is no data flow at the nodes N\ N.

Concurrent 1/O-operationsand | /O-streams. LetN be a finite, nonempty set of nodes.
We define a concurrent I/O-operation as a functiolN — DataU{_L}, where the sym-
bol 1. means “undefined”. We writslodes(c) for the set of noded € N such that
c(A) € Data, whereDatais the data domain. For technical reasons, we also allow the
emptyconcurrent I/O-operationy with Nodes(cy) = (0. It represents any internal step
of some component or a non-observable step, where data flpgaspat some hid-
den (invisible) nodes only. We refer @O as the set of all concurrent I/O-operations
(includingcy). As we suppos& andDatato be finite, the seClO of concurrent I/O-
operations is finite as well. When reasoning about the dataifica Reo network we
will also need a special symbgf that indicates that data flow has stopped, , stands
for ClIOU{/}.

Definition 1 (Constraint automata [6]). A constraint automaton (CA) is a tuple
‘A = <Q1N1 -, QO!Apv L)v

whereQ is a finite and nonempty set of stat@&a finite set of nodes;,— is a subset of

Q x ClO x Q called the transition relation of, Qo C Q a nonempty set of initial states,
AP a finite set of atomic propositions, afid Q — 24" a labeling function. We write

q > p instead of(q,c,p) €—. Furthermore, we define the set of all I/O-operations

enabled ing asClO(q) = {c € ClO: q < p for somep € Q }.

3

Intuitively, the nodes correspond to the I/O-ports of themponents. For the pictures of
CAs we shall use symbolic representations of the transiitation by combining tran-
sitions with the same starting and target state. For thipgae, we use 1/O-constraints,
i.e., propositional formulas in positive normal form thédrsd for sets of concurrent
I/O-operations. The 1/0O-constraints may impose condg&ion the nodes that may or
may not be involved and on the data items written on or read tieem.

I/O-constraints (10C). The abstract syntax of I/0-constraints is given by the gramm
iocu= tt | ff | A| ~A | (da,,....da,) €D | iociAioc, | ioc1Vioc,

whereA e N, A1,...,Ay are pairwise distinct nodes X andD C DataX. The meaning
of an 1/0-constraintoc is a subseCIO(ioc) of CIO defined in the obvious way. We
often use simplified notations for the 10Cs of the fofdy,,...,da,) € D. E.g., the
notationda = dg is a shorthand fotda,dg) € {(d1,dy) € Data? : dy = dy}, while
A /A (dg € P) stands for the sgt € CIO: {A,B} C Nodes(c) /A ¢(B) € P}.

Example 1 (CA)The following two CAs realize possible implementationstfoedes-
tination component with node s&p = {E,I,K, O, R} andprice component with node
setNp ={F,],M, T,V, W} of the ticket vending machine. Both components are allowed
to operate if and only if some data flow occurs on their synetzation portst andF
respectively. In the picture below we use a parameterizesentation for states.

F A (dp = dest;)\
(dL :“/PFJ)/\ dw = pij)

(dr > p) EA(d; =1)
A (dg = "unkn”) (dr = do = dest;)
dj = cancel) V (dw =pij)

di = cancel dy = cancel

Thedestinationcomponent simultaneously reads some destination id plaripon its
input portI and writes the destination string (variahlest;) to the I/O-deviceusing
portR and its output porD. If the destination number given is too large, i.e., it extsee

a certain maximum, the I/O-devicegets a message that the selected destination is
unknown. Theprice component receives two integer values at its input poread

V for the destination (variabldest;) and ticket type (variabléype;) and sends the
corresponding price (variabig ;) first to thel/O-deviceusing portW and in a second
step to thgpaymentomponent using poil. Both automata acceptcancelsignal at

any state and reset to their initial configuration.

Terminal states. A stateq is calledterminalif data flow may stop in statg. This is

the case if all enabled concurrent I/0O-operations requinessactivity of a component
connected to a sink or source node. Formally, staie said to be terminal if for all
concurrent I/O-operationsthat are enabled in statg the node-seflodes(c) is non-
empty. Stated differently, statgis terminal iff cy ¢ CIO(q). Note that data flow does
not need to stop in terminal states. Instead data flow coediiifuthere is an enabled
concurrent 1/0-operation where the involved components agree on interacting with
each other by means of performing the write and read operggiecified by. For each

non-terminal nodey, an invisible transition is enabled, i.e., we haye= CIO(q). This
I/O-operation does not require any interaction with the ponents that are connected
to the sink and source nodes and will fire, unless anothesitran is taken.

Executions, completeness, paths, |/O-streams. An executiorin A is a finite or infinite
sequence built by instances of consecutive transitipns: qg SN q1 2.

whereqo, g1, ...€ Q, ¢1,¢2,...€ CIO, andq; —*% qi,1 foralli > 0.

To reason about “maximal” behaviors of CAs we introduce théams of complete
executions and paths. An execution is said tcwbmpletdf it is either infinite or it is
finite and ends in a terminal state.pathof A is either an infinite execution or arises
from a finite complete execution by adding a special tramsisymbol,/ to denote

termination. More precisely, the finite paths have the farm qg RN dn L/> dn
whereqy is terminal. In the sequel, we shall use the symbpédr executions and the
symbol7 to range over paths. We writaths(q) to denote the set of all paths starting
in g and Exegin(q) for the set of all finite executions starting in The lengthjt| of

a pathrt is the total number of transitions takensn(including the pseudo-transition
with label /). Thus, the length of an infinite path ¢®, while the length of a finite

path7 as above isi+ 1. Let 7t = qg —> q1 —2 ... be a path and & n < |n|. Then

7 | n denotes the prefix of path with lengthn, i.e., | n £ qo RN dn IS an

execution, while fon = |71l we have thatt | n = mis still a path. Thé/O-stream ioén)
of a finite executiom is the word ovelCIO that is obtained by taking the projection

to the labels of the transitions. That ispif= qo — ... <™ qn, thenios(n) £ c;...cn.

Similarly, the associated 1/0O-stream for a finite path= qg S50 dn A gn is

defined byios() « C1...Cny/. Let10S = ClO* U CIO*y/ denote the set of all I/O-
streams.

3 Constraint Automata as Multi-Player Games

In this section we introduce a game-theoretical interpi@igfor CA. The players are
the individual components using (a)synchronous peeregr-pommunication. Each of
the players has control over his 1/0-behavior at its intsgfaodes. A player might
refuse some or even any synchronization operation withrqttagers. As in ordinary
ATL, players might build arbitrary coalitions to achieve a agrcommon goal includ-
ing a specific temporal behavior. A coalition of players ioési a set of controllable
nodesN C N, the union of all controllable coalition nodes, for whiclethlayers might
try to develop a common strategy to achieve their objedivértuitively, anN-strategy
takes the history of the system formalized by a finite execudis input, (i.e., we sup-
pose here perfect recall) and declare the conditions unkliehvtheN-agents (members
of the coalition) are willing to cooperate with each othed dhneir opponents. For in-
stance, arlN-strategy might offer to write data value 0 at a source nade N, but
refuse to write data value 1. The general notioMe$trategies also permits to couple
such constraints for the offered 1/0O-operations atithaodes with conditions on the

IOCs at the nodes i\ N. Furthermore, aiN-strategy might suggest tié-agents to
refuse any participation in concurrent I/O-operationse $pecial symbastopwill be
used for this purpose.

Definition 2 (Strategy). Let A be a CA as before and I1& be a node-set such that
N C N. An N-strategy is a function

& : Exegn(A) — 2510V (stoB,

assigning to any finite executiona setS(n) consisting of 1/0-operations € CIO or
the special symbdtopsuch that ifc € CIO andNodes(c) "N = () thenc € &(n).

The intuitive meaning of the condition required for Bstrategy asserts that the-
nodes are not in the position to refuse an 1/0-operatirhere none of théN-nodes

is involved. In particular, invisible 1/0-operations (i.eoncurrent I/O-operations with
the empty node-set) cannot be ruled out byNustrategy. A possible refinement for
the notion of a strategy would be to allow components to icstineir write opera-
tions only and not to cut down any input provided at their ltany nodes. Given an
N-strategyS, the &-paths are those paths.i, where each of the I/O-operations per-
formed is accepted at any time by thenodes and their strategy.

Notation 3 (&-executions,G-completeness©-paths) Let & be anN-strategy and

M = qo = q1 —3 ... afinite or infinite execution ir.. Theny is called aS-execution
if for any positioni € N with 1 < |n| we havec; ;; € &(n | i). A finite G-executiom

of lengthn is called&-completdf the last statey, of n) is terminal and at least one of
the following two conditions holds:

(i) stope &(n1) or (ii) thereis noc € CIO(gn) NS (n | n) such thaiNodes(c) € N

The first condition indicates that refusing any data flow amthnodes is a potential
behavior under strateg¥, while the second indicates the possibility for the oppasen
to do the same on their part (i.e. refusing any synchromnadin theN \ N nodes).
Furthermore, each infinit&-execution is said to b&-complete. AG-path denotes

any infiniteG-execution or any finite path = qg RN dn WA dn,Wherert | nis
a &-completeG-execution. We writePaths(q,S) to denote allS-paths starting ing.
Similarly, Exegn(q,&) denotes the set of all finit&-executions frony.

Notation 4 (Memoryless, finite-memory strategies)An N-strategyS is calledmem-
orylessif &(1) = &(n’) for all finite executions) andn’ that end in the same state.
Memoryless strategies can be seen as functidn@ — 2C'0 USO8 opviously, mem-
oryless strategies are special instancefinife-memorystrategies, i.e., strategies that
make their decisions on the basis of a finite automaton rétlaarthe full history.

4 Alternating-Time Stream Logic (ASL)

To reason about the components from a game-theoretic pbiiew, we introduce
alternating-time stream logi@ASL) which is inspired by alternating-time temporal logic
(ATL) [1]. ASLextendsBTSL[18] to state the possibility for components to cooperate
in such way that a certain temporal property or property @ndbservable data flow
holds.ASLis a branching time logic with state and path formulas. Thgestormula
fragment is as imMATL, but adapted to the CA framework where the alternating-time
guantifiers range over the strategies of certain node-Bdtstively, these node-sets
stand for the interface nodes of one or more components. Xiseential quantifier
[EN is used to indicate that the components with sink and sousdesinN have a
strategy ensuring a certain condition, no matter how theratbmponents connected to
the nodes iflN'\ N behave. The universal quantifigg, is dual and serves to state that
the components providing the write and read actions altimodes cannot avoid that a
certain condition holds. The syntax of tASLpath formulas is the same asBi SLand
uses the standard until- and release operator, but replaeestandard next modality
O with special operatorga)) and [«]] to impose conditions on the I/O-streams of
finite executions. In path formulas of the tyfle)) @ or [«]|®@, the formula® is a state
formula while « is a regular expression that stands for a regular languagetbe
alphabeCIO, . This type of formulas is inspired by propositional dynatoigic [12],
extended temporal logic [23], and timed scheduled datastiegic [3].

4.1 Syntax and Standard Semantics of ASL

In the sequel, we assume a fixed, non-empty and finite nod¥:$atrthermore, leAP
be non-empty and finite set of atomic propositions, whichlmariewed as conditions
on the states of the automaton. In case of the CA modeling @ftrannel an atomic
proposition might state that all buffer cells are empty @t the first buffer cell contains
a valued in some seP C Data.

Regular 1/0-stream expressions. The abstract syntax of regular 1/O-stream expres-
sions, briefly called stream expressions, is given by tHedi@hg grammar:

x u= ioc ‘ vV ‘ o™ ‘ 1] 0t ‘ a1 U

whereioc ranges over all IOCs. Any stream expression representsuareset of 1/0-
streams. The formal definition of the regular langual§2S(«) C I0Sis defined by

structural inductionlOS(ioc) is the set consisting of the I/O-streams of length 1 given
def

byioc, i.e.,I0Sioc) = ClO(ioc). Similarly,I0S(y/) is the singleton set consisting of the

I/O-stream,/. Union (U) has its standard meanin@S(o«; U o) £10S 1) UIOS(),

while Kleene star«) and concatenation (;) have to ensure that the specialration

symbol,/ can only appear at the end of an 1/O-stream:

10S(a*) £ {e})U J{01...0n : 03 € l0Sx)NCIO*,i=1,...n—1,0, € 10)}
n-l1

1091 oxp) d:ef{o‘l\/: 01v/ €105 1)} U{o102: 01 € IO x1) NCIO*, 02 € 10F x2)}

Syntax of ASL. State-formulas (denoted by capital greek letter¥) and path-formulas
(denoted by small greek lettegs) of ASLare built by the following grammar:

@ 2= true ’ a ‘ DA D, ’ -0 ’ 3 ’ En @
@ n= (o) D ‘ T @ ‘ D,UD, ‘ ®;RD;,

whereN C N, a € AP and« is a regular 1/0O-stream expression. The quantiien
the syntax ofASLstate formulas is the standard existential path quantifi€Td. and
ranges over all paths, while the operafag corresponds an existential quantification
over allN-strategies. The dual operathg, ¢ stating that no strategy for the nodes in
N can avoidy to hold is defined by:

' —En(—~®1R-D;)

An(a)@ = —En[a]—® An (@UD,) &
£ —En (01 U-D))

AnTa]® = —En (a)—D An (D1 RD;)

In an analogous way, the univerg€al'L-path quantifiety can be derived by duality
from 3. (Alternatively,V¢ can be defined b¥£;¢.) Other boolean connectives, like
disjunction or implication, are obtained in the obvious waythe following we shortly
write Ea @ for Egay @ andAa @ for Apa, .

ASLpath formulas are interpreted over paths in a CA. The maeslil and R denote
the ordinary until-operator and release-operator, rasmdg The eventually and al-
ways operator are obtained in the usual waydy < (true U®) andDJ® £ (false RD).
The intended meaning dfo)) @ is that it holds for a pathr iff 7t has a finite prefix
generating amx-stream andb holds for the state reached afterworfis] @ is the dual
operator of{ o)) @ and holds for a path iff for all finite prefixes ofr generating amnx-
stream, formulaD holds for the last state of the prefix. The standzegtoperator is de-
rived from the path formul&)® = (tt) @, which asserts the occurrence for some (non-
observable) data flow. Recall thEdS(tt) = CIO(tt) = CIO. Thus,(O® holds for all
paths where the underlying execution has at least oneftiemand® holds afterwords.
The presence of some observable data flow can be expresggdiby...V Ay)true,
whereN ={A1,...,An}. The path formuldtt*; /Ifalse is characteristic for the infinite
paths, while(tt*; /) true holds exactly for the finite paths. The terminal states aeg-ch
acterized by the state formutd(y/)true, while V{/)true is satisfied in exactly those
states where no concurrent I/O-operation is enalA&l. state formulas are the same
as inBTSLexcept for theEy -operator (and its dual).

For an intuitive example, consider a FIFO-channel with seumtodeA and sink nodé.
Then theASLstate formula& 5 (empty,E o CI(buffer=£ 0), Ag Oempty andd g Cempty

do hold, where(buffer 4 0) states that either the buffer is empty or contains a data
value different from zero. In case of the ticket vending miaetwe may ask whether
the user (possibly in coalition with other components) oalting three boundary nodes
N ={C,D,P} (for the cancelsignal, data items, and payment) has a strategy to get a
ticket without paying, i.e. if state formulé, - p, (—pay*)ticket printedholds. A dual
ASL property states that all components except the user repecancelsignal and
reset to their initial configuration. This can be expressed k. n [[tt*; Cllinitcont.

8

Standard semantics of ASL. Let A be a CA andr a path inA. The satisfaction rela-
tion = for ASLstate formulas is defined by structural induction as shoviovibe

q Etrue
gEa iff ael(q)
qFE O1AD; iff g ®1andq k= @)
qF—® iff qp= @
qE3de iff there existsr € Paths(q) such thatt = ¢
gEEN® iff there is anN-strategyS such that:
for all T € Paths(q, &) :tkE= o

The satisfaction relatiop- for ASLpath-formuls and the pathin A as follows:

= (x)@ iff there existsn € N such that 6< n < |n] and
ios(t | n) € 105 «) andqn, = @

= [o]® iff forall n € N suchthat 6< n < |7| we have:
ios(7t | n) € I0S(«) impliesqn, E @

e ©1UD, iff there existsn € N such that < n < |7r] where
gn E®oandgi E O foro<i<n

nE= O;RD, iff atleast one of the following conditions (i) or (ii) holds
() forall n € Nwith 0 < n < |t| we haveqn E ©»
(ii) there exists some € N with 0 < n < |7 such that:

gn E®1andgi = Ooforo<i<n

Given a statey and aASLpath formulagp, an N-strategyS is calledwinning for the
tuple (q,) if ¢ holds for all -paths starting inq. Thus, q = En o iff there ex-
ists a winningN-strategy for(q, ¢). For the derived operataky we get thatq =

An o iff for all N-strategiesS there existst € Paths(q, &) such thatt = o, i.e. there
is no winning strategy fofq, ¢).

Example 2 (ASL state formula3)he CA with node seN = {A, B} depicted below ful-
fills the following state formula\ » 0—3(Otrue, stating that an agent controllidgonly
cannot avoid that a terminal staqe will eventually be reached.

@

R
@ “AN-B AN-B

The multi-player game associated with a CA andA&i path formula isnot deter-
mined In fact, there are path formulgssuch that neither thil-agents have a winning
strategy fore nor does the opponents (i.e., tNe, N-agents) have a strategy to ensure
that does not hold. The reason for this is that the internal n@rdehism can yield
the possibility to generate paths whepeholds and paths wherg does not hold. In

particular, theASLstate formula&y ¢ andAy N @ arenotequivalent andq = En @
implies g = Ay N @ holds for all stateg] € Q, but not vice versa. A simple example
illustrating this fact is the following CA with node-sat={A, B}.

Example 3 (Internal nondeterminism).

{a}

R’ 0
s - @

dp =0 dp =1

Assume thati € AP is an atomic proposition which holds iy only, i.e.L(q1) ={a}
andL(gz) = (). Since the internal nondeterminism decides whetheor g, will be
selected as successor stategpfwhenA fires, neitherA can enforce noB can avoid
thatq; will be entered in the next step. Thus, we haye= Ag(Oa andqp £ EAOa.

4.2 ASL Model Checking

The model checking problem f&SLasks whether, for a given CA and ASL state
formula @, all initial statesqg of A satisfy ®. The main procedure foASL model
checking follows the standard approach @FL-like branching-time logics [8] and re-
cursively calculates the satisfaction st V) = {q € Q : ¢ = ¥} for all sub-formulas
Y of @. The treatment of thBTSl-fragment ofASLis the same as f@TSL(see [18]).
The only interesting part is how to calcul&@atEy ¢) for anASLpath formulasp and
node-selN C N. The essential ingredient for this is the predecessor tqePee(P,N)
which is defined as the set of all statgs Q such that théN-nodes have a strategy
which guarantees to move within one step to a state in

Definition 5 (Predecessors)Let P C Q andN C N a node-set. TherRre(P,N) de-
notes the set of all statesc Q such that the following two conditions hold:

(i) forall c € ClO(q) such thaNodes(c) NN = () we havePosfc](q) C P
(i) there exists & € CIO(q) such thatNodes(c) € N andPosfc](q) C P

wherePosfc](q) £ {pe Q:q > p).

Condition (i) is needed to ensure that no uncontrollablesitaon (from the view of the
N-agents) leads to a state outsidePofwhile condition (ii) asserts the existence of at
least one concurrent I/O-operation that can be enforcetidiNtagents and certainly
leads to a state iR. In fact we havePre(P,N) = {q€ Q : ¢ =EENOP }.

As for standardCTL (andATL), the semantics of the until and release operator have a
fixed point characterization. The s8a{En (@1 U®D>)) is the least fixpoint, while the
setSa{En (@1 R®,)) is the greatest fixpoint of the following operators 2» 29:

P — Saf®,) U (Pre(P,N)NnSaf{®;)) (until)
P — Saf{®,) N (Pre(P,N)USa{®,)) (release)

1 The same observation holds #&FL* interpreted over concurrent games, but for other reasons.

10

Hence, inASLwith the standard semantics we have the follonexgansion laws

En(DP1UD3) = O3V (O AENOEN (P UD))) 1)
En(DP1R®D3) = Do A (D1 VENOEN (P1RD3)) (2

where= denotes equivalence &SL state formulas. On the basis of (1) and (2), we
obtain that for winning objectives formalized W#®SL path formulase of the form
(®,UD5) or (01 RD;,), memoryless strategies are sufficient and the satisfastbn
Saf{Ey ¢) can be computed by means of the standard procedures to otepst and
greatest fixed points of monotonic operators. The algostifion until and release in-
cluding the proof of correctness can be found in the technégert [19]. ForASLstate
formulas of the fornEy () @ or En [«] @, we follow an automata-theoretic approach
which resembles the standard automata-bba$eanodel checking procedure and relies
on a representation @f by means of a finite automatdhand a graph analysis of the
productA 1 Z. As « is roughly an ordinary regular expression, we can applydsteh
methods to generate a deterministic finite autor@adaer the alphabetiO , such that
the accepted language dfagrees witHOS).

Let 2 = (Z,Cl0,/,5,Zo,ZF), i.€., Z stands for the state spac®, the initial state,Zr

for the set of final (accept) states abd Z x CIO,, — Z for the transition function.
In fact, beside the special-transitions,Z can be viewed as a CA where the Zgt
plays the role of the labeling function which separates thal fstates from the non-
final states. Due to the special role of the symbo(which can only appear at the
end of a word iNnOS(«)), we can assume that there are special staigsprc Zr and
Zreject € Z\ Zf such that eack/-transition leads to one of the stat&gceptOF Zreject
and that the stategccept OF zreject CANNOL be entered via any other symbol. Givén
andZ, we built the product = Z, similar to the product of finite automata and the
join operator for CAs [6], but with a special treatment of fseudo-transitions with
label \/. In fact, the product construction we use here differs frbwse used in the
BTSLmodel checking procedure [18] since in the context offitRgoperator we have
to incorporate the possibilities of tié-agents to enforce termination. Formally, we
define the CAA N @ 2 as follows:

Avane 2 £ (S, NU{Astoph —, S0, AP',L").
The state spacgis Q x Z andAstopis a new node-name (not containedij This new
node is supposed to be controllable. (Thus, Aok ¢ Z we will ask for (N U{Astop})-
strategies rather thax-strategies.) The initial states are given by

So = {(d,20) : q € Qo}-

The atomic propositions and labeling functiondn=<iy ¢ Z are given by the setP’ =
{aq,accep}, whereaq € L'((q,z)) iff q = ® andaccepte L'({q,z)) iff z€ Z¢. The
transitions inA iy @ Z are obtained by the following synchronization rule for comnc
rent I/O-operations € CIO (i.e.,c # /), stateq in A, and state € Z\ {zaccept Zreject:

q549 NzSg 2

3
(a.2) = (q'.2') ©

11

where we use the subscrigtfor the transition relations irl. In addition, we have the
following rules for each terminal staigin A and statez € Z \ {zaccept Zrejectt Where
Cstop IS @ concurrent I/O-operation witRodes(cstop) = {Astop} and cstop(Astop) IS an
arbitrary element from the data domaata:

—3Jc € CIO(q) s.t.Nodes(c) C N A ¢y ¢ CIO(q)

- (4)
(9,2) = (a,8(z,/))
Jc € ClO(q) s.t.Nodes(c) NN # 0 A ¢y € CIO(q) (5)

(4,2) =2 (q,5(z,1/))

Rule (4) formalizes the fact that if is terminal (i.e.,cyp ¢ ClIO(q)) and there is no

¢ € CIO(q) such thatNodes(c) € N then the opponents of tHe-agents may refuse
any write or read operation and can therefore enforce datetdlstop. This is modeled
in the product by a transition with the lalgl. Rule (5) stands for the fact that whenever
g is a terminal node for which some concurrent I1/0O-operatios enabled where the
N-nodes are involved then thé-agents might decide not to participate in any further
I/O-operation. This is modeled in the product by a transitidth the labekstp where
the new nodé\siop is supposed to be controllable. We obtain the following teminas
for ASLstate formulas of the forfn (o) @ andEy [o] ©.

Lemma 1. Let A be a CA,Z = (Z,CIO_/,8,Z0,Zf) a DFA for «, q in A, node-sets
N C N andASLstate formulasb. Then, the following statements are equivalent:

(@) a FEn(a)®
(b) (d,20) = Enufagep O(ao A accept
(c) There exists a finite-memoly-strategyS for A that is winning for{q, {x)) @)

Lemma 2. Let A be a CA,Z = (Z,CIO_/,8,Zo,Z¢) a DFA for «, q in A, node-sets
N C N andASLstate formulagd. Then, the following statements are equivalent:

(@ g FEN[o]®
(b) (d.z0) F Enugagept(accept— ao)
(c) there exists a finite memoty-strategyS which is winning for{q, [«]| D)

Thanks to lemmas 1 and 2 the satisfaction Sat6E () @) andSa{En [@) can
be computed by means of a reduction to the model checkinglgmofor the Ey -
operator in combination with the eventually- and alwaysdaliies. More precisely,
we first have to construct a DFA for «, then built the productl <N o Z and finally
apply the algorithm for until and release respectively,dmpute the satisfaction sets
for En Ui Ao O (aa Aaccept andEnia g, C(accept— aq) inthe product. Further-
more the memorylessN U {Astop})-Strategies for the product yield finite-memory win-
ning N-strategies ird for the objectiveg o) @ and[[«] ©, respectively.

Assuming thaSa{ ®) has already been computed the time complexity for computing
Sa(En (x) @) andSaf{En [«]]@) is linear in the size of CA4 and the DFAZ for «
(which can be exponential in the length ®@f. However, when restricting to th&TL-
fragment ofASLwhich just uses the standard path modalitiesR and(), but not{ o))

12

or [«]l, then the worst complexity of th&SLmodel checking algorithm is the same as
for standardATL, i.e., linear in the size ofl and the length of the formula.

We conclude this section by a simple observation concethiegase thak is a/-free
expression (i.e., does not contain a subexpression of thefo,/). In fact, for,/-free
expressions, the “best” strategy for tNeagents to ensurfex] @ is to stop the data flow
whenever possible. This is formalized in the following leenm

Lemma 3 (Winning strategies for/-free expressions)Let Gsop be the memoryless
N-strategy given bySsiop(q) = {stop U{c € CIO : Nodes(c) NN = (J} for all statesq.
Then, for each/-free stream expressianand state; we have:

q EEN[a]®@ iff Gstopis winning for(q, [l @).

Thus, ifais \/-free then the se@a{En [«]] @) can be computed by considering the sub-
automatonA’ of A that results by the memoryless strat&iytop and then computing
the satisfaction set foBat,/ (V[a]®) in A’. This can be done by means oBISL
model checker [18].

5 ASL with Fairness

The concept of fairness serves to rule out pathologicaNiers where certain liveness
properties are violated, although they are supposed to[fdld The nondeterminism
within our multi-player setting demand for sorA8Lfairness assumptions. To illustrate
the need for some fairness assumptions, we reuse the deadkmple (2). One would
expect that thSLstate formuld&g O—3IOtrue would be fulfilled, since the memory-
less strategys, which tries to write orB wheneverqg is reached during an execution
should be winning fofqo, 0—3Otrue). But

T=(o et q1 2 qo A€ Paths(qo, &) andr (£ —3Otrue.

The goal of this section is to introduce some fairness assangto exclude such un-
desirable behaviors from our observations.
Definition 6 ((N,&)-fairness). Let A = (Q,N,—,Qo,AP,L) be a CALN C N a

node-setS an N-strategy, andt = qo A qi1 = aG-path inA. Thenmt is called
(strongly)(N, &)-fair if eithertis finite or for allc € CIO we have:

31i>0.ceclo(q)N&(r | i) andNodes(c) C N implies 31> 0.¢; =,

WhereoﬂO i means "there exists infinitely many. We write FairPaths N) (q) for all
(N, ®)-fair paths starting iy andFairPaths N &) (A) for the set of(N, &)-fair paths.

In the above exampley = qo <% q1 3 qo —> ... ¢ FairPaths(p) &) (do) becauses

is willing to write infinitely often onB, but no write operation is ever executed. The
semantics of the faiASL path formulas is the same as faGL without fairness (see
section 4.1).

13

The semantics for failSLstate formulas also corresponds to the one without fairness
except for:

q Erir En @ iff there is anN-strategyS s.t. for allt € FairPaths N o) (q):mtE=o

The underlying model checking algorithms need to be modégied now rely on the
bottom up computation of the se@at.;; (V) ={q € Q | q i YV} for all subformulad.
The computation foBat,; (En (@1 R®>)) does not involve any modification at all, as
shown in the following lemma.

Lemma 4 (Release with fairness).et A be a CAN C N a node-sefg € Q a state in
A and®,, ®, ASLstate formulas. Theg i En (O R®D») iff g EEn(D1RD)).

The computation oBat,; (En (@1 U®D>)) relies on an iterative SCC-calculation in sub-
graphs ofA. The following lemma emerges that the remaining fair corapon of
Sabir (En (o)) @) andSat, (En [@) can be reduced to eventually and always in the
productA > Z.

Lemma5 (Fairness for ASL I/O-stream expression formulas). Let A be a CA,
N C N a node-setx a regular I/O-stream expressicha deterministic CA forx, and
let ® be ASLstate formula. Then, the following observation holds fostdtesq € Q.

I) q |=fair En <<OC>>(D.iI"I A iff <q,Zo> |=fair ENU{Asmp}Q(aCCGDV\ (1(1)) in A Z.
i) q Far EN[odl®@ iff (d,20) Frar ENugagepr(accept= ag) in A 2.

6 Conclusion and Future Work

This paper introduces a framework to verify alternatimgetiproperties for a multi-
player games derived from CA. The introduced concurrentegaemantics captures
any complex behavior caused by synchronous and asynchsquerr-to-peer com-
munication, mutual dependencies of I1/0-operations amulddsa-dependencies. Since
this game structure is non-standard it takes numerousiniahttdaptations of thé&TL
model checking algorithm. In future work we will drop our asgption onperfect infor-
mationandperfect recallto switch to a more realistic view for exogenous coordinatio
taking the local view [5,7,16,17,21, 11, 22] into accountfuture work we will con-
siderobservation-based strategigscase ofincomplete information

Apart from asking for the existence or absence of a winningtejy for a temporal
property the question might raise, if there is a way of cotingadhe components to
make this property hold. This directly leads to the conémolynthesis problem where
if possible a controlling CA is put in parallel with the othemmponents to ensure the
intended behavior. One step further we would like to buiklReo network which glues
those components the intended way by using the synthesisagipdescribed in [4].

14

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. Alur, T.A. Henzinger, and O. Kupferman. Alternatingr¢ temporal logicJournal of the
ACM, 49:672—713, 2002.

F. Arbab. Reo: A channel-based coordination model forgmmant composition Mathe-
matical Structures in Computer Sciendé(3):329-366, 2004.

. F. Arbab, C. Baier, F. de Boer, and J.J.M.M. Rutten. Models temporal logics for timed

component connectors. Rroc. of SEFMpages 198—-207. IEEE CS Press, 2004.

. F. Arbab, C. Baier, F. de Boer, J.J.M.M. Rutten, and M.a8itj Synthesis of Reo circuits for

implementation of component connector automata spedditat InProc. of COORDINA-
TION, volume 3454 of.NCS 2005.

. S.Azhar, G.L. Peterson, and J.H. Reif. On multiplayercooperative games of incomplete

information: Part 1&2. Technical report, Durham, NC, USA91.

. C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten. Madglcomponent connectors in Reo

by constraint automata. Bcience of Computer Programming, flages 75-113., 2006.

. K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskiigorithms for omega-regular

games with imperfect informatiolfCoRR abs/0706.2619, 2007.

. E.M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic¢fieation of finite-state concurrent

systems using temporal logic specificatioA&M TOPLAS8(2):244-263, 1986.

. L. de Alfaro and T.A. Henzinger. Concurrent omega-reggémes. IrProc. of LICS pages

141-154, Jan. 2000.

L. de Alfaro and T.A. Henzinger. Interface automataF8E Prog pages 109-120. ACM
Press, 2001.

M. de Wulf, Laurent Doyen, and Jean-Francois Raskinatéicke theory for solving games
of imperfect information. IHSCGC pages 153-168, 2006.

M. J. Fischer and R.J. Ladner. Propositional dynamitlofjregular programsJournal of
Computer and System Scieng8el94-211, 1979.

David Fitoussi and Moshe Tennenholtz. Choosing soaves for multi-agent systems: min-
imality and simplicity. Artif. Intell., 119(1-2):61-101, 2000.

N. FrancezFairness Springer-Verlag, 1986.

R. Grosu and B. Rumpe. Concurrent timed port automatahnieal Report TUM-19533,
Techn. Univ. Miinchen, 1995. http://www4.informatiktusenchen.de/reports/.

W.v.d. Hoek, M. Roberts, and M. Wooldridge. Knowledgd aacial laws. IAAMAS pages
674-681, 2005.

W.v.d. Hoek and M. Wooldridge. Cooperation, knowledge] time: Alternating-time tem-
poral epistemic logic and its applicatiorfStudia Logica75(1):125-157, 2003.

S. Kliippelholz and C. Baier. Symbolic model checkingdieannel-based component con-
nectors. InProc. of FOCLASA 20Q6/olume 175(2) oENTCS pages 19-37, 2007.

S. Klippelholz and C. Baier. Alternating-Time Strearagic for Multi-Agent Sys-
tems. Technical report, Technical University Dresden, &00 http://wwwtcs.inf.tu-
dresden.deklueppel/ASLKB2008.pdf.

N. Lynch and M.R. Tuttle. An introduction to input/outpautomata. CWI Quarterly
2(3):219-246, 1989.

J.H. Reif. The complexity of two-player games of incoetelinformation.J. Comput. Syst.
Sci, 29(2):274-301, 1984.

P.Y. Schobbens. Alternating-time logic with imperfeztall. InProc. of LCMASvolume
85(2) of ENTCS pages 1-12, 2004.

P. Wolper. Specification and synthesis of communicagiiogesses using an extended tem-
poral logic. InProc. of POPL pages 20-33, 1982.

M. Wooldridge. Social laws in alternating time. DEON, page 2, 2004.

15

A Appendix

Definition 7 (1/O-constraints (I0C)). We defineCIO(tt) £ clo, CIO(ff) £ (), and for
the literalsA and—A:

def def

CIO(A) = {c€eCIO: A € Nodes(c) } andCIO(—A) = {c e CIO: A ¢ Nodes(c) }.

The I/O-constraintgéd A, ,...,da,) € D impose conditions for the written and read data
items. ThatisCIO((da,,...,da,) € D) agrees with the set

{cecio:{A1,...,Ax} C Nodes(c), (c(A1),...,c(Ax)) €D }.
Conjunction and disjunction have their standard meanieg, i
ClO(ioc; Aiocy) £ CIO(iocy) N ClO(iocy)
ClO(ioc; Vioc,) £ CIO(iocy) UCIO(iocy)

O

Definition 8 (Finite memory stratiegies).A finite-memoryN-strategy is a tupl&t =
(ModesA, u,mg), where

— Modesis a finite set (of so-called modes),

— mo € Modesthe starting mode,

— 11: Q x Modes— 2€10U{stoB the decision function, and

— A:Modesx (Q x CIO x Q) — Modesthe transition function.

The associatet-strategySgy is given by:

Ci

GWI(QOS---E’QWL) = H(Qi,A*(mo,QOg---HQi))
whereA*(m, qo <4 q1) = A(m.,qo > q1) and
A*(mgo B a1 3 ... 2% qi) = A*(Amgo B q1), a1 2 ... 5 qq).

A memoryless strategy is a finite-memory strategy with alsingpdemy.
O

Lemma 6 (Correctness of the Pre-operator)Pre(P,N) = {q €Q:qEENQP }
Proof. “C": Suppose that] € Pre(P,N). Let & be a memoryleshbl-strategy such that
S(q) = {c € ClO:Nodes(c) "N =0} U
{c € ClO(q) : Nodes(c) € N A Postcl](q) C P}

Then,{c € &(q) : Nodes(c) € N} = () by condition (2) andPosfc](q) C P for all
c € 6(q)NCIO(q) by condition (1). Hence, eac&-complete executiom from ¢

starts with a transition; — p wherec € &(q) N CIO(q). But thenst = QP for all
7t € Paths(q,&). Thus,S yields a witness fog = En OP.

“D": Suppose now thag = Exn OP. We have to check conditions (1) and (2) in defini-
tion 5. Let& be a memorylesh!-strategy winning fofq, OP).

16

(1) Letc € ClO(q) such thatNodes(c) "N = () and letp € Postc](q). By the require-
ments forN-strategies, we havec &(q). Letrt be an arbitrarnys-path that starts
with the transitiong = p. Sincert = OP we getp € P.

(2) If q is terminal then the executiog of length 0 cannot b&-complete, since

q A q = Otrue and(OP holds for all&-paths fromq. Hence, there exists a con-
current 1/O-operatior € ClIO(q) N &(q) such thaNodes(c) € N. We now show
thatPos{c](q) C P. For each statp € Posfc](q) there exists &-pathr that starts
with the transitiong < p. As 7t = OP we getp € P.

O

Algorithms (1) and (2) show how the satisfaction setsfgr{ @1 U®,) andEn (01 RD5)
can be computed together with a memorylsstrategyS that is winning for all states
q whereEn (01 UD5) or En (P71 RD2)) holds.

Algorithm 1 Algorithm for computingSat(En (®1 U®>));

Po := Sa{®3);
i:=0;
repeat
Pij1 = Py U (Sal((Dl)ﬂPre(Pi,N));
for all stategp € P; 1\ P; do
S(p) := {c €CIO: Nodes(c) NN =0V § Posfc](p) C P; };
end for
i:=14+1;
until Pi=Pi_q;
for all stategp € (Q\P;)USafd,) do
S(p) := CloU{stop};
end for
returnP;; (* Py =SalEn (D1 Ud3)) %)

Lemma 7 (Correctness of algorithms (1) and (2)).Let A be a CA as beforé\ C N
a node-set and lgb; and®, be ASL state formulae. Then:

(a) Algorithm 1 correctly returns the s8af{En (@1 UD,)) and the computed memo-
rylessN-strategyS is winning for all stateg] € Sa{En (©;UD,)) andASLpath
formula(®,UD5).

(b) Algorithm 2 correctly returns the s8a{En (@1 R®>)) and the computed memo-
rylessN-strategyS is winning for all stateg) € Sa{En (@1 R®»)) andASLpath
formula(®1R®5).

Proof. Both algorithms rely on the standard iterative approachoimpmute least and
greatest fixed points of monotonic operators. This yields tiie returned set®; agree

with the satisfaction se&@afEn (©1U®D,)) andSaf{En (P11 R®D>)), respectively. It re-
mains to check that the computed strategies are winning.

17

Algorithm 2 Algorithm for computingSat(EN (Dy Rd)z));
for all statep € Q do
&(p) = ClOU{stop;
end for
Po := Saf®3);
i:=0;
repeat
Piy1 == PiN (Sal(CDl)UPre(Pi,N));
for all stategp € P;1\Saf®;) do
&(p) := &(p) \{c € CIO(p) : Posicl(p) Z Pi };
end for
i:=14+1;
until Py =Pi_q;
returnPy; (* Py =SalEN (D1 RD,)) *)

(a) LetP; = Sa(En (D1 UDy)). We first observe that if statg¢ € P; 1\ P; thenq €
Pre(Pi,N). By the definition of the Pre-operator and the definitioisdt;) we ob-
tain thatPos{c](q) C P; forall c € &(q) and thatS(q) N{c € CIO(q) : Nodes(c) C
N} = (). From this, we get by induction om that for each finite5-execution

Co C1 C
nM=do—qi—...—>qn

such thafgp = En (@1 UD2) andg; H~ @, for 0 < i < n the following two condi-
tions hold:

— nis not&-complete, i.e., there isac (g) NCIO(gr) with Nodes(c) € N.
— There existindice$> jo >j1 >j2>...>jn suchthag; € Pj, for0<i<n.

As P; C Saf{®,) for i > 1 andPy = Saf{®,) we obtain thatt = (®,UD>) for
each&-path that starts in a statg € P; = Sa{En (©1 U®D5)).

(b) LetP; = Sa(En (®1R®Dy)). Forthe stateg € P;NSa{®1) we haveq = ©1 A D,
(asP; C P;_1 C...C Po = Sa(dy)) and thereforer |= (®1 R®D;) for all pathsr
starting inq.

If g € P;\ Sa{®,) then for allc € &(q) we havePostc](q) C P; (by definition of

&) andq < Pre(P;,N). The definition of the Pre-operator yields the existence of a
concurrent I/O-operatione CIO(q) such thaNodes(c) € N andPosfc](q) C P;.

But thenc € &(q), and eacl&-execution ending i is S-incomplete.

These two observations yield that eadhpatht = qg ket q1 - Paths(qo, &)
starting in a statejg € P; is either infinite and consists of statesAp\ Sa{®1) or has
a prefixqg RN gn Whereqq,...,qn_1 E P2 andg,, = ®1 A D». In both cases,
we havern = (01 R®Dy).

O

For the following observations on the properties of the paiglease notice théfz, /) €
{zaccept Zreject). Hence, with the corresponding two transition rules a sstentered

18

whereZ is in one of its special statesccept OF zreject: FOr technical reasons we add
self-loops with labet for such states:

<q,Zaccept> ﬂ <q,Zaccept> <q,Zreject> ﬂ <q,Zreject>

These transitions ensure that all paths in the product treatteally enter a statgy, z)
wherez € {zaccept Zrejecy are infinite and repeat statq, z) forever. For each transition
in the product (obtained by one of the above compositiorsjule define its projection
to A as follows.

- If (q,2) = (q’,2') arises by applying rule (3) then i-projectionisq =4 q’.

- If {(q,2) BN (q,z') (wherez’ € {zaccept Zreject) @ndc € {cp, cstop)) iS Obtained from
rule (4) or rule (5) then theA-projection isq i% qg.

— The A-projection of the pseudo-transitidn, z) A (q,z) that might appear at the
end of a finite path i <y 0 2 IS q L/m qg.

Given a pathf in A N ¢ 2 that does not enter a state of the fofm zaccepy OF
(q,zreject) then we define thel-projectionproj 4 (7t) as the unique path if that results
by taking theA-projection of all transitions irit. For a pathr that eventually enters a

state of the form(q,z) with z € {zaccepi Zreject) We ignore the (infinite) suffiXq, z) A

(q,z) % ... and defingroj 4 (7t) as theA-projection of the prefix oft that leads to
(q,z). Similarly, we define th&.-projectionprojy (7t) as an infinite or finite sequence of
elements irZ of the same length ggoj 4 (7). Then, if7 starts in a statéqo, zo) (Wwhere
zp is the initial state oR) thenproj,, (7) is the run for the I/O-stream @froj 4 (7t) in Z.
The definitions of the projections are extended for exeast{@e., prefixes of paths) in
the obvious way. From now on, we omit the subscNpnd® and simply writeA < Z
for the product whenever they are clear from the context.

Lemma 8 (Properties of the product).

(i) If (q,z) isterminal inA xin ¢ Z then (a)q is terminal inA, (b) there is a concurrent
I/O-operationc € CIO(q) such that) # Nodes(c) C N, and (C)cstopis enabled in
(d,2).

(i) If 7tis a path inA >N @ Z thenproj 4 (7T) is a path inA.

(iii) For each pathrt in the product starting in a statey,zo) we have: = ¢(aqp /A
accep} iff proj4 () = (o) @.

(iv) For each pathit in the product starting in a statg,zp) we have:t = O(accept—
ag) iff proj 4 (1) = [x].

(v) Let & be anN-strategy ford and an (N U{Astop})-Strategy forA o<n, o Z such
that for all finite execution§ in A xin ¢ Z Starting in a statéq, zo) the following
conditions hold:

a) If c: N — (DataU{_L}) is a concurrent I/O-operation for node-3éthenc €
T(R) iff c € S(proj4 (1))

b) cstop € T(R) iff stope S(proj, (1))

¢) stop¢ <(7)

19

then theA-projections of theZ-paths starting in a statgy,zp) are exactly thes-
paths starting iny.

Proof. ad (i).Let (q,z) be a terminal state in the product.

— Stateq is terminal inA. This is due to the fact that each transitmﬁ—@» pinAcan

be lifted to a transitiorq, z) A (p,d(z,cq)) in the product.

— There is some concurrent 1/O-operatior CIO(q) such thatNodes(c) € N, as
otherwise rule (4) would yield thay, is enabled inq, z).

— Furthermoregsiop € CIO((q,z)). This can be seen as follows. We hayez CIO(q)
(asq is terminal in.A). Suppose by contradiction thadp ¢ CIO((q,z)). Then,
there is nac € CIO(q) such thaNodes(c) NN # () (premise of rule (5)). But then
Nodes(c) NN = 0 for all ¢ € CIO(q) and (asy ¢ ClO(q)) there is nac € CIO(q)
such thaNodes(c) C N. But then rule (4) yieldsy € CIO({q,z)). This contradicts
the assumption thdy, z) is terminal in the product.

ad (ii). By (i) we get that all paths in the product are infinite or endhistate(q,z)
whereq is terminal inA andcstop is enabled in(q,z). The projection of an infinite
path7t in the product that never enters a state in

Sy =
is an infinite path inA, since all their transitions arise by rule (3) (i.e., theioéls are
concurrent 1/0-operations for the original node-38t The same holds for all finite
paths in the product that do not en®y. They end in a terminal statgy,z) of the
product. But thery is terminal inA and theA-projection is a finite path itl. Paths in
AN, Z that eventually enter a stateSry, are infinite, but they are projected to finite
paths inA.

<qy7~accep>v <QaZreject> tqe Q}

ad (iii). Let @ be a path in the product starting in a stétgzo) and letr e proj 4 (7t)
be itsA-projection.

— Suppose first thaft = ¢(aqp /A accepi. Then, 7 has a finite prefix that leads to

a state(p,z) where(agp /A accep} holds. Hencep = ® andz € Zg. Letn be
the length of this prefixzg,z1,...,zn be the sequence of states obtained by the
projectionprojy (7t | n) andcy...cy, its I/O-stream. We may suppose thak |7/
(Note that paths that eventually enter a statez) € S,/ stay in this statep,z)
forever.) Then, we have:

e C1...cp = i0S(7t | M)

® 20,21,...,zn iIStherunforcy...ch in Z andz, =z € Z¢
But thenc; ...cn, is accepted by, and we get; ...cn € IOS«). Furthermore, the
last state oft | n isp. Since® holds inp, this yieldsrt = (o)) ©.

— Suppose now that = () @. Then, there is some prefix| n of 7 such thatits 1/0O-
streamios(t | n) belongs tdOS(«) and the last state of 7t | n belongs tdGaf @).
Letzg,...,zn be the run foios(wt | n) in Z. Then,z,, € Zy and statép,z,) is the
last state oft | n. As (a4 /\accepi holds in(p,z,) we getr = O(aqe /A accepi.

20

ad (iv). Let = (qo,zo) — (q1,z1) —% ... be a path in the product starting in a

state(qo,zo) and letrt e proj 4 (7t) be its.A-projection.

— Suppose first that = [O(accept— ag). Letn < |7 such thatos(7t | n) € 105 «).
Then, zg, ...,z is the run forios(7t | n) in Z. Hence,z,, € Z¢ and therefore
(dn,zn) = accept As [J(accept— ag) holds forit and(qn,zn) is the(n + 1)-st
state offt we have(qn,zn) = ag. This yields thatg,, satisfies® and therefore

nE [« O.

— Assumer =[] ®@. Letn <|7]. The goalis to show that tHe. + 1)-st state/qn , zn)
of 7t satisfies(accept— aq). This is obvious, in casacceptdoes not hold for
(dn,zn). Assume now thatqn,zn) = accept Then,z,, € Z¢.

o If (dn,zn) & Sy thenn < |tl andzg, ...,z is the run forios(7t | n) in Z.
As z,, € Z¢ we get thafos(t | n) € I0S «) and thereforey,, = ®. But then,
(dn.zn) F ao.

o If (qn,zn) € Sy then there is somaw < n such thatm < |7l and

<qmyzm> = <qm+1azm+1> == <qu!ZTl>

Then, zg,...,zm is the run forios(7t | m) in Z. As z;, =z, € Zg We get
thatios(nt | m) € I0S(«) and thereforey,,, = ®. But this yields,(qm,zm) =
<qu.|ZTl.>): aop-

ad (v).We first show that the projection of eaghpath is aS-path:

— EachT-execution that entel$, , via a transition(p, z) A (p,d(z,+/)) is projected

to a finite pathrr that ends with the transitiop Y, p. By the premise of rule (4)
for the product, we get thatodes(c) \ N # () for all ¢ € CIO(p). Hence, the prefix
7t | n of m (wheren = |rr] — 1) leads from some initial statgy € Qg to p and

constitutes a&-complete execution. Hence,is a finiteS-path.

— EachT-executions that entet,, via a transition(p, z) Sotop (p,d(z,+/)) is also

projected to a finite path that ends with the transition Y, p. Again, letn =

|l — 1. The concurrent I/O-operati@giop belongs toT (1) for the prefixi =7 | n
that leads from the first state, zp) of 7t to (p,z). By the second assumption on the
relation betweeff andS we get thastope S (n) for the projectiom = proj 4 (17).
But sincep is terminal (by the premise of rule (5) in the product) we deitt
n =7 | nis &-complete. Thereforey is a finite G-path.

— We now regard &-complete finite executiof that does not visif, , and ends in
state(p,z). Then,(p,z) is terminal and there is nbe T (7}) NCIO((p,z)) such that
Nodes(¢) € NU{Astop. Hence, there is noc &(1n) NCIO(p) such thaNodes(c) C
N. But thenn & proj 4 (1) is a&-complete execution and therefore the correspond-
ing pathm is a&-path.

— Given an infiniteT executior] that does not enter, /, its A-projection is an infinite
path inA and therefore &-path.

This shows that the projections of <paths are5-paths.

21

We now regard &-pathm in A and show that it is thel-projection of somé&-path.
This is obvious ifr is infinite since then it can be lifted to an infini@path in the
product that does not entg(,. Assume now that

C1 Cn
T =4do—..-—dn —dn

is finite of lengthn + 1. Letzg, z1,...,zn,zn+1 be the run for the I/O-stream ...cn v/
of 7t. Then,

i = (do,z0) =5 ... = (qn,zn)

is aT-execution in the product and its projectigrc proj 4 () =m | nis &-complete.
Hence,q., is terminal and at least one of the following two conditioh}dr (2) holds:

(a) stope S(n)
(b) there is no concurrent I/O-operatior S(n)NCIO(gr) such thaNodes(c) C N.

If {(qn.zn) is non-terminal ther is enabled in(qn,zn) because of rule (4) for the
product and we haveostcyl((qn,zn)) ={(qn,d(zn,/))}. Butthenmis the projection
of the infiniteT-path

7 (G, 5(z0,7/)) <% (an,8(z0,v)) 5 ...

Let us now assume thét,zn) is terminal, i.e.cg is not enabled i{qn,zn). Then,
for all ¢ € ClO(gn) we havel # Nodes(c) € N (otherwise the premise of rule (4)
applies anddn,zn) would be non-terminal).

— Suppose that case (a) applies. Thagyp € (1),

Cstop

=% (dn,8(2o,v/)) = (dn.8(z0,/)) =% ...
is an infiniteT-path and its projection is.
— Suppose that case (b), but not case (a) applies. ThsioigZ S(n) and there is

no concurrent I/0O-operatione &(n) N CIO(gy) such thatNodes(c) € N. Then,
cstop € T(11). Hence, there is no concurrent I/O-operaan () NCIO((qn,zn))

such thatNodes(¢) C N U{Astop. But thenr is T-complete andj \—/> (dn,zn)is a
%-path and its projection is.
O

Lemma9 (Lemma 1).Let A be a CA,2Z = (Z,CIO_/,8,Z0,ZF) a DFA for «, q in
A, node-setsN C N and ASL state formulaed. Then, the following statements are
equivalent:

(@) a FEn(a)®
(b) (d,20) = EnufAgep O(ao A accept
(c) There exists a finite-memoly-strategyS for A that is winning for{q, { x)) @)

22

Proof. “(a) = (b)": Suppose thag = En () @ and thaiS is anN-strategy forA that
is winning for (q, {«) @). The goal is to define a correspondify U {Astop})-strategy
T for A xin,o Z. Given a finite executiof in the product we take itgl-projection

ne pl’OjA()) and define

T(H{) S(n) . if stopg &(n)
N (&(n)\ {stog) U {cstop : Otherwise.

Then,¥ and® are related as required in part (v) of Lemma 8. Heficis, winning for
({d,20),O(aq Aaccep}) by parts (i) and (v) of lemma 8.

“(b) = (C):" Suppose(d,zo) = Enuagp Oam /Aaccept. By part (a) of lemma 7
there is a memorylesBN U {Astop)-Strategy® for A an,@ Z that is winning for
({d,20),0(aq Aaccepi). We now define a finite-memoty-strategylt = (ModesA, u, mo)
for A as follows. The set of modes agrees with the state-spaZe icf., Modes= Z.

The decision functiom is given by:

(q Z) def <q Z> sif Cstop% E((q,z))

Hid, T((a,z)) \ {cstop/) U {stop : otherwise.

The transition relatior is defined byA(z,q = p) £ 8(z,c).

It remains to show that is winning for (g, () @). In fact, T and9t are related as
in part (v) of lemma 8. Again, applying parts (iii) and (v) @hhma 8 we get thant is
winning for (q, {o) @).

The implication (c}=> (a) is obvious.
O

Lemma 10 (Lemma 2).Let A be a CA,Z = (Z,CIO,/,8,Zo,Zf) a DFA for o, g in
A, node-setsN C N and ASL state formulaed. Then, the following statements are
equivalent:

(@ g FEN[o]®
(b) <q:ZO> = ENU{Aswp}D(accepH aop)
(c) there exists a finite memoty-strategyS which is winning for{q, [«]| D)

Proof. Using parts (iv) and (v) of lemma 8, the argument is analogouke proof of
lemma 9.
O

Lemma 11 (Lemma 3).Let Gsop be the memorylessl-strategy given bYSsiop(q) =
{stop U{c € CIO : Nodes(c) "N = @} for all statesq. Then, for each,/-free stream
expressionx and statej we have:

q =EN[«] @ iff Sstopis winning for(q, [x] D).

23

Proof. The implication—> is obvious by the semantics for the modaliy. Sup-
pose now that| = En [«]]®. The goal is to show tha®siop is @ winning strategy for
(q,[x]|®@). We pick a winning strateg¥ for (q,[«]®). That is,t = [«]]® for all
T-pathsn that start in state). By definition of Gsiop We get that for each incomplete

. C Ci
Ssiorexecutiom = qg — ... — q; we have:
o

Gstop(Qi) NCIO(qi) € E(n)

Hence, allincomplete executionskixegin(q, Sstop) are prefixes ok-executions. Thus,
if 1 € ExeGn(q,Gstop) andn is an incomplet&-execution starting iy then we have:

if ios(n) € |05 «) impliesp = ® wherep is the last state af.

In particular, this yieldst = [«]® for all infinite Gsorpaths that start iny. As « is
\/-free, none of the 1/0-streams IS «) contains the termination symbgl. Hence,
for each finiteSsio-pathrt we haveios(mt) ¢ 10§ «) and thereforer = [«]|®.

O

For the computation dbaty, (En (@1 UD2)) we define the following function:

MN@,P) 2SaEx (O@A-P) A\ (O0ac AVICIP))
ceCIO(N)

wherea, is a new atomic proposition to reason about the enabledri@ssancurrent
I/O-operatiorc in a certain state such thata. € L(q) iff ¢ € CIO(q). In other words,
I'(N, ®,P) computes the set of all statgs= Q such that there is a strategy ensuring to
stay inSa{®)\ P forever. But at the same time there exists a concurrent gératiorc,
consisting ofN-controllable nodes only, which is infinitely often enabkat guaran-
tees to move into & state in the next step once it has been chosen.

Lemma 12 (Until with fairness). Let A be a CA,N C N a node-set and leb; and
@, be ASLstate formulae. Assuminiy-fairness, algorithm 3 correctly returns the set
Sat,ir (En (P17 UD3)) and the computed memorylebsstrategyS is winning for all
statesq € Saty (En (@1 UD3)) andASLpath formula(®1 Ud5).

Proof. LetP:=P; be the set of states adlbe theN-strategies returned by algorithm 3.
We will show the following:

qdeP < g En(PLUD3).
“=": Let g € Pi,1\Pi. Theng came intoP;,; C P because

a) Eitherq € Pp = Sa{®,), thenq i En (@1 UD5).
b) Orq e Saf®1)NPre(P;,N). Let

Q= |J Postd(q)

ceS(q)

be the set of successor states. But thea®, andQ’ C P; and we may apply the
same arguments for all statgse Q’.

24

Algorithm 3 Algorithm for computingSat (En (©1U®5));

Po := Saf ®3);
i:=0;
repeat
P = Pi;
repeat
Pit1 = P U (Sai((Dl)ﬂPre(Pi,N));
for all stateg € P;y1\P; do
S(p) := {c €CIO : Nodes(c) "N =0V () # Posfc(p) C P; };
end for
i:=141,
until Pi=Pi_1;
Pit1 = Py UT(N,Dq,Py);
for all stateg € P; 1\ P; do
S(p) := {c €CIO : Nodes(c) NN =0V () # Posfc](p) € Piy1 };
end for
i:=14+1;
until P; =P;
for all stategp € (Q \P;)USafd,) do
S(p) = CloU{stop};
end for
returnPy; (* Py = Satair (En (O UD)) %)

c) OrqeT(N,dq,P;). Letagain

Q= |J Postcl(q)

ceS(q)

be the set of successor states. But thea ®1, andQ’ C P;; and we may apply
the same arguments for all statg'sc Q’.

“«<" Letus assume ¢ P (i.e.q ¢ P; for all i € N). But then,

a ¢ SaEn ((01UP)V (D@ A=P) A \/ D0(ac AVIEIP))))
ceCIO(N)

Hence, for allN-strategiesS exists a pathrt € Paths(q, &) such that

T (@LUP)V ((O(@1A-P) A \/ DO0(ac AVICIP)).
ceCIO(N)

Lett=qo 3 q1 3 .. besuch a path iRaths(q,&). Then fulfills at least one of
the following two conditions:

i) mE—(D1UP) AQ(—D1V P). Let g; be the first state of such thatg; £ @;. In
this caser | i can be extended toMa-fair path, which violate$s®; UP).

25

i)y mE=—(®1UP) A A O0(ac — I{c)—P). In this caser itself is aN-fair
ceCIO(N)
path violating(®1 UP).

Consequently for alN-strategiesS there exists a path € FairPaths n) (q) such that
n i (P1UD2) andq Fair En (P21 UD2).
O

Lemma 13 (Lemma 4).Let A be a CA,N C N a node-set and leb; and ®, be
ASLstate formulae. Then, the following observation haldst,;; En (©1R®)) iff q =
En (D1 RD5) for all statesq € Q.

Proof. “<=": This is obvious sinc&airPaths n &) (q) C Paths(q,).
“=": Let us assume that =g En (®1R®>) butq H~ En (D1 RD2).
Let & be anN-strategy s.tzt € FairPathsn) (q) implies thatr = (©,U®2), and

T=(o e Paths(q, &) a path s.trt |~ (©1R®D5). This pathrt can not beN-fair
(i.e.7 € FairPaths N &) (d)), since this contradicts our assumption.

Let q; be the first state ot s.t.q; £ @2. Then the execution =7t | i can be extended

to aN-fair pathnt’ € Paths(q,&). Obviouslyrnt’ i (©1 R®;), which again contradicts
our assumption. The extensionpfis done in the following manner. Whenever there
isac € Clo(qj)N& (M — ... — q;) with § # Nodes(c) C N then append (one of) the
transition(s)qj’ 5 qj’Jrl to the executiom, otherwise chose one of the enabled 1/0O-
operationg € Clo(qj/). Once the execution becomes maximal the corresponding path
is finite and therefor&-fair (see condition (1) of definition 6). Otherwise the riéisig

path becomeb!-fair, too (see condition (2) of definition 6).
O

Lemma 14 (Lemma 5). Let A be a CA/,N C N a node-setx a regular 1/O-stream
expressionZ a deterministic CA forx, and let® be ASL state formula. Then, the
following observation holds for all statese Q:

I) q |=fair En <<OC>>(D.in A iff <q,Zo> |=fair ENU{Amp}Q(accept/\ (1(1)) in A Z.
i) q Frir EN [l @ iff (d,20) Frar ENUiageC(accept— ap) in A Z.

Proof. The proof comes from combining the arguments of lemma 9, 20add 13.
O

26

