
Alternating-Time Stream Logic for Multi-Agent Systems

Sascha Klüppelholz, Christel Baier⋆

Technische Universität Dresden, Institut für Theoretische Informatik, Germany
{klueppel,baier}@tcs.inf.tu-dresden.de

Abstract. Constraint automata have been introduced to provide a compositional,
operational semantics for the exogenous coordination language Reo, but they
can also serve interface specification for components and anoperational model
for other coordination languages. Constraint automata have been used as basis
for equivalence checking and model checking temporal logical properties. The
main contribution of this paper is to reason about the local view and interac-
tion and cooperation facilities of individual components or coalitions of compo-
nents by means of a multi-player semantics for constraint automata. We introduce
a temporal logic framework that combines classical features of alternating-time
logic (ATL) for concurrent games with special operators to specify theobservable
data flow at the I/O-ports of components. Since constraint automata support any
kind of synchronous and asynchronous peer-to-peer communication, the result-
ing game structure is non-standard and requires a series of nontrivial adaptations
of theATLmodel checking algorithm.

1 Introduction

In the last decade several models and specification languages for formal reasoning about
the middle-ware layer of software have been developed. Suchcoordination models con-
sist of ad-hoc libraries of functions providing higher-level inter-process communication
support in parallel and especially distributed applications. They aim at a clean separa-
tion between individual software components and their interactions within their overall
software organization. Our approach is inspired by the coordination language Reo [2],
which provides theglue-codeto coordinate components in an exogenous manner. In
this paper we use constraint automata, which have been introduced as an operational
semantics for Reo [6]. Constraint automata provide a specification formalism for both,
the glue-code (e.g. given as a (Reo) network, or another (channel-based) coordination
mechanism) and the behavioral interfaces of components, and can serve to formalize the
overall behavior of the composite system. Constraint automata capture any kind of syn-
chronous and asynchronous peer-to-peer communication including data-dependencies
of I/O-operations. The syntax of constraint automata is similar to ordinary labeled tran-
sition systems and related models, such as timed port automata [15], I/O-automata [20],
and interface automata [10]. The differences are mainly based on the fact that constraint
automata support any kind of channel-based communication.An extensive discussion
on the differences and similarities can be found in [6].

⋆ The authors are supported by the DFG-NWO project SYANCO and the EU project CREDO.

The purpose of this paper is to provide a multi-agent semantics for constraint automata
and an alternating-time temporal logic to specify and verify the components consid-
ered as individual players of a multi-agent game. The connected components are the
individual players and the network sets up the rules how those players interact with
each other. The glue-code might be seen as a complex set of social laws [13, 24] the
players have to stick to. Constraint automata, interpretedas multi-player game struc-
tures, are a special type of concurrent games. The specific challenges of an alternating
time approach are caused by the very special mixture of asynchrony and synchrony,
mutual dependencies of I/O-operations and data-dependencies. In each state, several
concurrent I/O-operations can be enabled, but only some of them might be available
once a player refuses some synchronization or declares conditions on the data values
accepted on his input ports or on his pending write operations. Furthermore, constraint
automata can contain some internal nondeterminism, which yields a rather complex
and nonstandard concurrent game structure. We are not awareof any other paper that
treats alternating-time aspects for such concurrent games, where the enabledness and
also the effect of a concurrent I/O-operation highly depends on the choices of the other
players. Our approach allows us to check whether or not some coalition of agents has
a strategy to achieve a common goal, no matter how the opponents behave, or which
internal nondeterministic choices were made. In contrast to standard concurrent games,
see e.g. [1, 9], in our approach a coalition’s strategy may select sets of I/O-operations
or even refuse any I/O-operations.

For specifying and analyzing the local views and interaction possibilities of (coalitions
of) agents, we introduce an alternating-time logic, calledalternating-time stream logic
(ASL). The logicASLis aCTL-like branching-time logic which combines the features of
standardATL [1] with the operators ofBTSL[18]. The logicBTSLhas been introduced
as a temporal logic for reasoning about (Reo) networks. Beside the standard modalities
of CTL [8], BTSLsupports the specification of the observable data flow at the I/O-ports
of channels and components by means of regular expressions.The focus ofATL is to ask
for the existence (and absence) of a coalition’s strategy toachieve (avoid respectively)
a specific temporal goal once the behavior for each of the components is specified.

For a simple example, we regard a ticket vending machine, which consists of a number
of components (e.g.I/O-device, clock, destination, price, payment, and printer). The
exact behavior of the components might be specified in terms of constraint automata.
ASLcan be used to formalize the property stating that the user (possibly together with
some other component like theclock) can find a way to trick the other players and get a
ticket without paying. A dualASLproperty would state that no matter what strategy the
opponents use, the coalition of opponents will not have a chance to avoid that sending
thecancelsignal always resets all components to their initial configuration.

As a first step we assumeperfect recallon the systems history andperfect informa-
tion on the global state of the system. This interpretation of constraint automata as a
multi-player game is consistent with the standard semantics ofATLand adequate if the
strategies are viewed as a central control that is aware of all activities in the system.

Our approach differs from otherATL-like approaches for concurrent multi-player games
in various aspects. First, our nonstandard game structure (see explanations above) re-
quires a revised notion of strategies for (coalitions of) components. Second, since com-

2

ponents may refuse any further interaction from some momenton, the concept of finite
runs and fairness plays a crucial role in the logicASL. To reason about liveness proper-
ties we need an adaption of the standard notion of strong (process) fairness. Our notion
of fairness is not a requirement for strategies, but formalizes the ability of certain strate-
gies of a componentC to enforce infinite data flow at the I/O-ports ofC. Third, ASL
provides special operators to reason about the observable data flow at the I/O-ports of
the components and the nodes of the given network. To the bestof our knowledge, such
operators have not yet been investigated in the context of alternating-time game models.

Organization. Section 2 gives a brief introduction to constraint automata. In section 3
we provide the multi-player semantics for constraint automata and introduce the notion
of a strategy and its runs. Section 4 introduces the temporallogic ASLand presents
corresponding model checking algorithms. Section 5 introduces fairness assumptions
to ASLmodel checking, before section 6 concludes the paper. An extended technical
report including the proofs and other technical material isavailable on the web [19].

2 Constraint Automata (CA)

This section summarizes the main concepts of CA. We slightlydepart from the syntax
of CA as introduced in [6] and deal with transitionsq

c−→ p, wherec is a concurrent
I/O-operation, i.e.,c consists of a (possibly empty) node-setN⊆ N together with data
items for eachA ∈N that are written or received at nodeA. In the moment wherec is
executed there is no data flow at the nodesA ∈ N\N.

Concurrent I/O-operations and I/O-streams. LetN be a finite, nonempty set of nodes.
We define a concurrent I/O-operation as a functionc : N → Data∪ {⊥}, where the sym-
bol ⊥ means “undefined”. We writeNodes(c) for the set of nodesA ∈ N such that
c(A) ∈ Data, whereData is the data domain. For technical reasons, we also allow the
emptyconcurrent I/O-operationc∅ with Nodes(c∅) = ∅. It represents any internal step
of some component or a non-observable step, where data flow appears at some hid-
den (invisible) nodes only. We refer toCIO as the set of all concurrent I/O-operations
(includingc∅). As we supposeN andData to be finite, the setCIO of concurrent I/O-
operations is finite as well. When reasoning about the data flow in a Reo network we
will also need a special symbol

√
that indicates that data flow has stopped.CIO√ stands

for CIO∪ {
√

}.

Definition 1 (Constraint automata [6]). A constraint automaton (CA) is a tuple

A = 〈Q,N,−→,Q0,AP,L〉,

whereQ is a finite and nonempty set of states,N a finite set of nodes,−→ is a subset of
Q×CIO×Q called the transition relation ofA,Q0 ⊆Q a nonempty set of initial states,
AP a finite set of atomic propositions, andL : Q→ 2AP a labeling function. We write
q

c−→ p instead of(q,c,p) ∈−→. Furthermore, we define the set of all I/O-operations
enabled inq asCIO(q)

def
=

{
c ∈ CIO : q

c−→ p for somep ∈Q
}

.

3

Intuitively, the nodes correspond to the I/O-ports of the components. For the pictures of
CAs we shall use symbolic representations of the transitionrelation by combining tran-
sitions with the same starting and target state. For this purpose, we use I/O-constraints,
i.e., propositional formulas in positive normal form that stand for sets of concurrent
I/O-operations. The I/O-constraints may impose conditions on the nodes that may or
may not be involved and on the data items written on or read from them.

I/O-constraints (IOC). The abstract syntax of I/O-constraints is given by the grammar:

ioc ::= tt
∣

∣ ff
∣

∣ A
∣

∣ ¬A
∣

∣ (dA1, . . . ,dAk
) ∈D

∣

∣ ioc1 ∧ ioc2
∣

∣ ioc1 ∨ ioc2

whereA∈N,A1, . . . ,Ak are pairwise distinct nodes inN andD⊆Datak. The meaning
of an I/O-constraintioc is a subsetCIO(ioc) of CIO defined in the obvious way. We
often use simplified notations for the IOCs of the form(dA1, . . . ,dAk

) ∈ D. E.g., the
notationdA = dB is a shorthand for(dA,dB) ∈ {(d1,d2) ∈ Data2 : d1 = d2}, while
A∧ (dB ∈ P) stands for the set{c ∈ CIO : {A,B} ⊆ Nodes(c) ∧ c(B) ∈ P}.

Example 1 (CA).The following two CAs realize possible implementations forthedes-
tination component with node setND = {E,I,K,O,R} andprice component with node
setNP = {F,J,M,T ,V ,W} of the ticket vending machine. Both components are allowed
to operate if and only if some data flow occurs on their synchronization portsE andF
respectively. In the picture below we use a parameterized representation for states.

dK = cancel

Dest0

(dI > µ) ∧

E ∧ (dR = ”unkn”)

E ∧ (dI = i)∧

(dR = dO = desti)

F ∧ (dT = desti)∧

(dJ = cancel) ∨ (dM = pi,j)

Pricepi,jPrice0

dJ = cancel

(dV = typej) ∧ (dW = pi,j)

Thedestinationcomponent simultaneously reads some destination id (variablei) on its
input portI and writes the destination string (variabledesti) to the I/O-deviceusing
portR and its output portO. If the destination number given is too large, i.e., it exceeds
a certain maximumµ, the I/O-devicegets a message that the selected destination is
unknown. Theprice component receives two integer values at its input portsT and
V for the destination (variabledesti) and ticket type (variabletypej) and sends the
corresponding price (variablepi,j) first to theI/O-deviceusing portW and in a second
step to thepaymentcomponent using portM. Both automata accept acancelsignal at
any state and reset to their initial configuration.

Terminal states. A stateq is calledterminal if data flow may stop in stateq. This is
the case if all enabled concurrent I/O-operations require some activity of a component
connected to a sink or source node. Formally, stateq is said to be terminal if for all
concurrent I/O-operationsc that are enabled in stateq, the node-setNodes(c) is non-
empty. Stated differently, stateq is terminal iff c∅ /∈ CIO(q). Note that data flow does
not need to stop in terminal states. Instead data flow continues if there is an enabled
concurrent I/O-operationc where the involved components agree on interacting with
each other by means of performing the write and read operation specified byc. For each

4

non-terminal nodeq, an invisible transition is enabled, i.e., we havec∅ ∈ CIO(q). This
I/O-operation does not require any interaction with the components that are connected
to the sink and source nodes and will fire, unless another transition is taken.

Executions, completeness, paths, I/O-streams. An executionin A is a finite or infinite
sequence built by instances of consecutive transitions:η = q0

c1−→ q1
c2−→ . . .

whereq0,q1, . . .∈Q, c1,c2, . . .∈ CIO, andqi

ci+1−−−→ qi+1 for all i> 0.

To reason about “maximal” behaviors of CAs we introduce the notions of complete
executions and paths. An execution is said to becompleteif it is either infinite or it is
finite and ends in a terminal state. Apathof A is either an infinite execution or arises
from a finite complete execution by adding a special transition symbol

√
to denote

termination. More precisely, the finite paths have the formπ = q0
c1−→ . . .

cn−→ qn

√
−→ qn

whereqn is terminal. In the sequel, we shall use the symbolη for executions and the
symbolπ to range over paths. We writePaths(q) to denote the set of all paths starting
in q andExecfin(q) for the set of all finite executions starting inq. The length|π| of
a pathπ is the total number of transitions taken inπ (including the pseudo-transition
with label

√
). Thus, the length of an infinite path is∞, while the length of a finite

pathπ as above isn+ 1. Let π = q0
c1−→ q1

c2−→ . . . be a path and 06 n < |π|. Then

π ↓ n denotes the prefix of pathπ with lengthn, i.e.,π ↓ n def
= q0

c1−→ . . .
cn−→ qn is an

execution, while forn= |π| we have thatπ ↓n = π is still a path. TheI/O-stream ios(η)
of a finite executionη is the word overCIO that is obtained by taking the projection
to the labels of the transitions. That is, ifη = q0

c1−→ . . .
cn−→ qn thenios(η)

def
= c1 . . .cn.

Similarly, the associated I/O-stream for a finite pathπ = q0
c1−→ . . .

cn−→ qn

√
−→ qn is

defined byios(π)
def
= c1 . . .cn

√
. Let IOS = CIO∗ ∪CIO∗√ denote the set of all I/O-

streams.

3 Constraint Automata as Multi-Player Games

In this section we introduce a game-theoretical interpretation for CA. The players are
the individual components using (a)synchronous peer-to-peer communication. Each of
the players has control over his I/O-behavior at its interface nodes. A player might
refuse some or even any synchronization operation with other players. As in ordinary
ATL, players might build arbitrary coalitions to achieve a certain common goal includ-
ing a specific temporal behavior. A coalition of players induces a set of controllable
nodesN⊆ N, the union of all controllable coalition nodes, for which the players might
try to develop a common strategy to achieve their objective(s). Intuitively, anN-strategy
takes the history of the system formalized by a finite execution as input, (i.e., we sup-
pose here perfect recall) and declare the conditions under which theN-agents (members
of the coalition) are willing to cooperate with each other and their opponents. For in-
stance, anN-strategy might offer to write data value 0 at a source nodeA ∈ N, but
refuse to write data value 1. The general notion ofN-strategies also permits to couple
such constraints for the offered I/O-operations at theN-nodes with conditions on the

5

IOCs at the nodes inN\N. Furthermore, anN-strategy might suggest theN-agents to
refuse any participation in concurrent I/O-operations. The special symbolstopwill be
used for this purpose.

Definition 2 (Strategy). Let A be a CA as before and letN be a node-set such that
N⊆ N. AnN-strategy is a function

S : Execfin(A) → 2CIO∪ {stop},

assigning to any finite executionη a setS(η) consisting of I/O-operationsc ∈ CIO or
the special symbolstopsuch that ifc ∈ CIO andNodes(c)∩N = ∅ thenc ∈ S(η).

The intuitive meaning of the condition required for anN-strategy asserts that theN-
nodes are not in the position to refuse an I/O-operationc where none of theN-nodes
is involved. In particular, invisible I/O-operations (i.e., concurrent I/O-operations with
the empty node-set) cannot be ruled out by anN-strategy. A possible refinement for
the notion of a strategy would be to allow components to restrict their write opera-
tions only and not to cut down any input provided at their boundary nodes. Given an
N-strategyS, theS-paths are those paths inA, where each of the I/O-operations per-
formed is accepted at any time by theN-nodes and their strategyS.

Notation 3 (S-executions,S-completeness,S-paths) Let S be anN-strategy and
η = q0

c1−→ q1
c2−→ . . . a finite or infinite execution inA. Then,η is called aS-execution

if for any positioni ∈ N with i < |η| we haveci+1 ∈ S(η ↓ i). A finite S-executionη
of lengthn is calledS-completeif the last stateqn of η is terminal and at least one of
the following two conditions holds:

(i) stop∈ S(η) or (ii) there is noc ∈ CIO(qn)∩S(η ↓ n) such thatNodes(c) ⊆N

The first condition indicates that refusing any data flow on theN-nodes is a potential
behavior under strategyS, while the second indicates the possibility for the opponents
to do the same on their part (i.e. refusing any synchronization on theN \N nodes).
Furthermore, each infiniteS-execution is said to beS-complete. AS-path denotes

any infiniteS-execution or any finite pathπ = q0
c1−→ . . .

cn−→ qn

√
−→ qn, whereπ ↓n is

a S-completeS-execution. We writePaths(q,S) to denote allS-paths starting inq.
Similarly, Execfin(q,S) denotes the set of all finiteS-executions fromq.

Notation 4 (Memoryless, finite-memory strategies)AnN-strategyS is calledmem-
orylessif S(η) = S(η ′) for all finite executionsη andη ′ that end in the same state.
Memoryless strategies can be seen as functionsS :Q→ 2CIO∪ {stop}. Obviously, mem-
oryless strategies are special instances offinite-memorystrategies, i.e., strategies that
make their decisions on the basis of a finite automaton ratherthan the full history.

6

4 Alternating-Time Stream Logic (ASL)

To reason about the components from a game-theoretic point of view, we introduce
alternating-time stream logic(ASL) which is inspired by alternating-time temporal logic
(ATL) [1]. ASLextendsBTSL[18] to state the possibility for components to cooperate
in such way that a certain temporal property or property on the observable data flow
holds.ASL is a branching time logic with state and path formulas. The state formula
fragment is as inATL, but adapted to the CA framework where the alternating-time
quantifiers range over the strategies of certain node-sets.Intuitively, these node-sets
stand for the interface nodes of one or more components. The existential quantifier
EN is used to indicate that the components with sink and source nodes inN have a
strategy ensuring a certain condition, no matter how the other components connected to
the nodes inN\N behave. The universal quantifierAN is dual and serves to state that
the components providing the write and read actions at theN-nodes cannot avoid that a
certain condition holds. The syntax of theASLpath formulas is the same as inBTSLand
uses the standard until- and release operator, but replacesthe standard next modality
© with special operators〈〈α〉〉 and [[α]] to impose conditions on the I/O-streams of
finite executions. In path formulas of the type〈〈α〉〉Φ or [[α]]Φ, the formulaΦ is a state
formula whileα is a regular expression that stands for a regular language over the
alphabetCIO√. This type of formulas is inspired by propositional dynamiclogic [12],
extended temporal logic [23], and timed scheduled data stream logic [3].

4.1 Syntax and Standard Semantics of ASL

In the sequel, we assume a fixed, non-empty and finite node-setN. Furthermore, letAP
be non-empty and finite set of atomic propositions, which canbe viewed as conditions
on the states of the automaton. In case of the CA modeling a FIFO-channel an atomic
proposition might state that all buffer cells are empty or that the first buffer cell contains
a valued in some setP ⊆ Data.

Regular I/O-stream expressions. The abstract syntax of regular I/O-stream expres-
sions, briefly called stream expressions, is given by the following grammar:

α ::= ioc
∣

∣

∣

√ ∣

∣

∣ α∗
∣

∣

∣ α1;α2

∣

∣

∣ α1∪α2

whereioc ranges over all IOCs. Any stream expression represents a regular set of I/O-
streams. The formal definition of the regular languagesIOS(α) ⊆ IOS is defined by
structural induction.IOS(ioc) is the set consisting of the I/O-streams of length 1 given
by ioc, i.e.,IOS(ioc)

def
= CIO(ioc). Similarly,IOS(

√
) is the singleton set consisting of the

I/O-stream
√

. Union (∪) has its standard meaning:IOS(α1∪α2)
def
= IOS(α1)∪ IOS(α2),

while Kleene star (∗) and concatenation (;) have to ensure that the special termination
symbol

√
can only appear at the end of an I/O-stream:

IOS(α∗) def
= {ε}∪ ⋃

n>1
{σ1 . . .σn : σi ∈ IOS(α)∩CIO∗,i = 1, . . . ,n− 1,σn ∈ IOS(α)}

IOS(α1;α2)
def
= {σ1

√
: σ1

√∈ IOS(α1)} ∪ {σ1σ2 : σ1 ∈ IOS(α1)∩CIO∗,σ2 ∈ IOS(α2)}

7

Syntax of ASL. State-formulas (denoted by capital greek lettersΦ,Ψ) and path-formulas
(denoted by small greek lettersϕ,ψ) of ASLare built by the following grammar:

Φ ::= true
∣

∣

∣
a

∣

∣

∣
Φ1 ∧Φ2

∣

∣

∣
¬Φ

∣

∣

∣
∃ϕ

∣

∣

∣
ENϕ

ϕ ::= 〈〈α〉〉Φ
∣

∣

∣
[[α]]Φ

∣

∣

∣
Φ1UΦ2

∣

∣

∣
Φ1RΦ2

whereN ⊆ N, a ∈ AP andα is a regular I/O-stream expression. The quantifier∃ in
the syntax ofASLstate formulas is the standard existential path quantifier of CTL and
ranges over all paths, while the operatorEN corresponds an existential quantification
over allN-strategies. The dual operatorANϕ stating that no strategy for the nodes in
N can avoidϕ to hold is defined by:

AN〈〈α〉〉Φ def
= ¬EN[[α]]¬Φ

AN[[α]]Φ
def
= ¬EN〈〈α〉〉¬Φ

AN(Φ1UΦ2)
def
= ¬EN(¬Φ1R¬Φ2)

AN(Φ1RΦ2)
def
= ¬EN(¬Φ1U¬Φ2)

In an analogous way, the universalCTL-path quantifier∀ can be derived by duality
from ∃. (Alternatively,∀ϕ can be defined byE∅ϕ.) Other boolean connectives, like
disjunction or implication, are obtained in the obvious way. In the following we shortly
write EAϕ for E{A}ϕ andAAϕ for A{A}ϕ.
ASLpath formulas are interpreted over paths in a CA. The modalities U andR denote
the ordinary until-operator and release-operator, respectively. The eventually and al-
ways operator are obtained in the usual way by♦Φ

def
= (trueUΦ) and�Φ

def
= (falseRΦ).

The intended meaning of〈〈α〉〉Φ is that it holds for a pathπ iff π has a finite prefix
generating anα-stream andΦ holds for the state reached afterwords.[[α]]Φ is the dual
operator of〈〈α〉〉Φ and holds for a pathπ iff for all finite prefixes ofπ generating anα-
stream, formulaΦ holds for the last state of the prefix. The standardnextoperator is de-
rived from the path formula©Φ def

= 〈〈tt〉〉Φ, which asserts the occurrence for some (non-
observable) data flow. Recall thatIOS(tt) = CIO(tt) = CIO. Thus,©Φ holds for all
paths where the underlying execution has at least one transition andΦ holds afterwords.
The presence of some observable data flow can be expressed by〈〈A1 ∨ . . .∨An〉〉true,
whereN = {A1, . . . ,An}. The path formula[[tt∗;

√
]]false is characteristic for the infinite

paths, while〈〈tt∗;
√〉〉true holds exactly for the finite paths. The terminal states are char-

acterized by the state formula∃〈〈√〉〉true, while ∀〈〈√〉〉true is satisfied in exactly those
states where no concurrent I/O-operation is enabled.ASLstate formulas are the same
as inBTSLexcept for theEN-operator (and its dual).
For an intuitive example, consider a FIFO-channel with source nodeA and sink nodeB.
Then theASLstate formulasEA�empty,EA�(buffer 6= 0), AB♦empty andAB�empty
do hold, where(buffer 6= 0) states that either the buffer is empty or contains a data
value different from zero. In case of the ticket vending machine we may ask whether
the user (possibly in coalition with other components) controlling three boundary nodes
N = {C,D,P} (for the cancelsignal, data items, and payment) has a strategy to get a
ticket without paying, i.e. if state formulaE{C,D,P}〈〈¬pay∗〉〉ticket printedholds. A dual
ASLproperty states that all components except the user respectthecancelsignal and
reset to their initial configuration. This can be expressed by AN\N[[tt∗;C]]initconf.

8

Standard semantics of ASL. Let A be a CA andπ a path inA. The satisfaction rela-
tion |= for ASLstate formulas is defined by structural induction as shown below:

q |= true
q |= a iff a ∈ L(q)
q |=Φ1 ∧Φ2 iff q |=Φ1 andq |=Φ2

q |= ¬Φ iff q 6|=Φ
q |= ∃ϕ iff there existsπ ∈ Paths(q) such thatπ |=ϕ

q |= ENϕ iff there is anN-strategyS such that:
for all π ∈ Paths(q,S) : π |=ϕ

The satisfaction relation|= for ASLpath-formuls and the pathπ in A as follows:

π |= 〈〈α〉〉Φ iff there existsn ∈ N such that 06 n6 |π| and
ios(π ↓ n) ∈ IOS(α) andqn |=Φ

π |= [[α]]Φ iff for all n ∈ N such that 06 n6 |π| we have:
ios(π ↓ n) ∈ IOS(α) impliesqn |=Φ

π |=Φ1UΦ2 iff there existsn ∈ N such that 06 n < |π| where
qn |=Φ2 andqi |=Φ1 for 0 6 i < n

π |=Φ1RΦ2 iff at least one of the following conditions (i) or (ii) holds:
(i) for all n ∈ N with 0 6 n < |π| we have:qn |=Φ2

(ii) there exists somen ∈ N with 0 6 n6 |π| such that:
qn |=Φ1 andqi |=Φ2 for 0 6 i6 n

Given a stateq and aASLpath formulaϕ, anN-strategyS is calledwinning for the
tuple 〈q,ϕ〉 if ϕ holds for all S-paths starting inq. Thus,q |= ENϕ iff there ex-
ists a winningN-strategy for〈q,ϕ〉. For the derived operatorAN we get thatq |=

ANϕ iff for all N-strategiesS there existsπ ∈ Paths(q,S) such thatπ |=ϕ, i.e. there
is no winning strategy for〈q,ϕ〉.

Example 2 (ASL state formulas).The CA with node setN = {A,B} depicted below ful-
fills the following state formulaAA♦¬∃©true, stating that an agent controllingA only
cannot avoid that a terminal stateqt will eventually be reached.

¬A ∧ ¬B

¬A ∧ B

A ∧ ¬Bq0

q1

qt

¬A ∧ ¬B

The multi-player game associated with a CA and anASLpath formula isnot deter-
mined. In fact, there are path formulasϕ such that neither theN-agents have a winning
strategy forϕ nor does the opponents (i.e., theN\N-agents) have a strategy to ensure
thatϕ does not hold. The reason for this is that the internal nondeterminism can yield
the possibility to generate paths whereϕ holds and paths whereϕ does not hold. In

9

particular, theASLstate formulasENϕ andAN\Nϕ arenotequivalent1 andq |= ENϕ

impliesq |= AN\Nϕ holds for all statesq ∈Q, but not vice versa. A simple example
illustrating this fact is the following CA with node-setN = {A,B}.

Example 3 (Internal nondeterminism).

A A

dB = 0 dB = 1

q0q1 q2

{a} ∅

Assume thata ∈ AP is an atomic proposition which holds inq1 only, i.e.L(q1) = {a}

andL(q2) = ∅. Since the internal nondeterminism decides whetherq1 or q2 will be
selected as successor state ofq0 whenA fires, neitherA can enforce norB can avoid
thatq1 will be entered in the next step. Thus, we haveq0 |= AB©a andq0 6|= EA©a.

4.2 ASL Model Checking

The model checking problem forASLasks whether, for a given CAA andASLstate
formulaΦ, all initial statesq0 of A satisfyΦ. The main procedure forASL model
checking follows the standard approach forCTL-like branching-time logics [8] and re-
cursively calculates the satisfaction setsSat(Ψ) = {q ∈Q : q |=Ψ} for all sub-formulas
Ψ ofΦ. The treatment of theBTSL-fragment ofASLis the same as forBTSL(see [18]).
The only interesting part is how to calculateSat(ENϕ) for anASLpath formulasϕ and
node-setN⊆ N. The essential ingredient for this is the predecessor operator Pre(P,N)

which is defined as the set of all statesq ∈ Q such that theN-nodes have a strategy
which guarantees to move within one step to a state inP.

Definition 5 (Predecessors).Let P ⊆ Q andN ⊆ N a node-set. Then,Pre(P,N) de-
notes the set of all statesq ∈Q such that the following two conditions hold:

(i) for all c ∈ CIO(q) such thatNodes(c)∩N = ∅ we havePost[c](q) ⊆ P
(ii) there exists ac ∈ CIO(q) such thatNodes(c) ⊆N andPost[c](q) ⊆ P

wherePost[c](q)
def
= {p ∈Q : q

c−→ p}.

Condition (i) is needed to ensure that no uncontrollable transition (from the view of the
N-agents) leads to a state outside ofP, while condition (ii) asserts the existence of at
least one concurrent I/O-operation that can be enforced by theN-agents and certainly
leads to a state inP. In fact we havePre(P,N) =

{
q ∈Q : q |= EN©P

}
.

As for standardCTL (andATL), the semantics of the until and release operator have a
fixed point characterization. The setSat(EN(Φ1UΦ2)) is the least fixpoint, while the
setSat(EN(Φ1RΦ2)) is the greatest fixpoint of the following operators 2Q → 2Q:

P 7→ Sat(Φ2)∪ (Pre(P,N)∩Sat(Φ1)) (until)
P 7→ Sat(Φ2)∩ (Pre(P,N)∪Sat(Φ1)) (release)

1 The same observation holds forATL∗ interpreted over concurrent games, but for other reasons.

10

Hence, inASLwith the standard semantics we have the followingexpansion laws:

EN(Φ1UΦ2) ≡ Φ2 ∨ (Φ1 ∧EN©EN(Φ1UΦ2)) (1)

EN(Φ1RΦ2) ≡ Φ2 ∧ (Φ1 ∨EN©EN(Φ1RΦ2)) (2)

where≡ denotes equivalence ofASLstate formulas. On the basis of (1) and (2), we
obtain that for winning objectives formalized byASL path formulasϕ of the form
(Φ1UΦ2) or (Φ1RΦ2), memoryless strategies are sufficient and the satisfactionset
Sat(ENϕ) can be computed by means of the standard procedures to compute least and
greatest fixed points of monotonic operators. The algorithms for until and release in-
cluding the proof of correctness can be found in the technical report [19]. ForASLstate
formulas of the formEN〈〈α〉〉Φ orEN[[α]]Φ, we follow an automata-theoretic approach
which resembles the standard automata-basedLTL model checking procedure and relies
on a representation ofα by means of a finite automatonZ and a graph analysis of the
productA ⊲⊳ Z. Asα is roughly an ordinary regular expression, we can apply standard
methods to generate a deterministic finite automataZ over the alphabetCIO√ such that
the accepted language ofZ agrees withIOS(α).
Let Z = (Z,CIO√,δ,Z0,ZF), i.e.,Z stands for the state space,z0 the initial state,ZF

for the set of final (accept) states andδ : Z×CIO√ → Z for the transition function.
In fact, beside the special

√
-transitions,Z can be viewed as a CA where the setZF

plays the role of the labeling function which separates the final states from the non-
final states. Due to the special role of the symbol

√
(which can only appear at the

end of a word inIOS(α)), we can assume that there are special stateszaccept∈ ZF and
zreject ∈ Z \ZF such that each

√
-transition leads to one of the stateszaccept or zreject

and that the stateszaccept or zreject cannot be entered via any other symbol. GivenA

andZ, we built the productA ⊲⊳ Z, similar to the product of finite automata and the
join operator for CAs [6], but with a special treatment of thepseudo-transitions with
label

√
. In fact, the product construction we use here differs from those used in the

BTSLmodel checking procedure [18] since in the context of theEN-operator we have
to incorporate the possibilities of theN-agents to enforce termination. Formally, we
define the CAA ⊲⊳N,Φ Z as follows:

A ⊲⊳N,Φ Z
def
= (S,N∪ {Astop},−→,S0,AP′,L ′).

The state spaceS isQ×Z andAstop is a new node-name (not contained inN). This new
node is supposed to be controllable. (Thus, forA ⊲⊳N,Φ Z we will ask for(N∪ {Astop})-
strategies rather thanN-strategies.) The initial states are given by

S0 =
{
〈q,z0〉 : q ∈Q0

}
.

The atomic propositions and labeling function inA ⊲⊳N,Φ Z are given by the setAP′ =

{aΦ,accept}, whereaΦ ∈ L ′(〈q,z〉) iff q |=Φ andaccept∈ L ′(〈q,z〉) iff z ∈ ZF. The
transitions inA ⊲⊳N,Φ Z are obtained by the following synchronization rule for concur-
rent I/O-operationsc ∈ CIO (i.e.,c 6= √

), stateq in A, and statez ∈ Z\ {zaccept,zreject}:

q
c−→A q

′ ∧ z
c−→Z z

′

〈q,z〉 c−→ 〈q ′,z ′〉
(3)

11

where we use the subscriptA for the transition relations inA. In addition, we have the
following rules for each terminal stateq in A and statez ∈ Z \ {zaccept,zreject} where
cstop is a concurrent I/O-operation withNodes(cstop) = {Astop} andcstop(Astop) is an
arbitrary element from the data domainData:

¬∃c ∈ CIO(q) s.t.Nodes(c) ⊆N ∧ c∅ /∈ CIO(q)

〈q,z〉 c∅−→ 〈q,δ(z,
√

)〉
(4)

∃c ∈ CIO(q) s.t.Nodes(c)∩N 6= ∅ ∧ c∅ /∈ CIO(q)

〈q,z〉 cstop−−→ 〈q,δ(z,
√

)〉
(5)

Rule (4) formalizes the fact that ifq is terminal (i.e.,c∅ /∈ CIO(q)) and there is no
c ∈ CIO(q) such thatNodes(c) ⊆ N then the opponents of theN-agents may refuse
any write or read operation and can therefore enforce data flow to stop. This is modeled
in the product by a transition with the labelc∅. Rule (5) stands for the fact that whenever
q is a terminal node for which some concurrent I/O-operationc is enabled where the
N-nodes are involved then theN-agents might decide not to participate in any further
I/O-operation. This is modeled in the product by a transition with the labelcstop where
the new nodeAstop is supposed to be controllable. We obtain the following two lemmas
for ASLstate formulas of the formEN〈〈α〉〉Φ andEN[[α]]Φ.

Lemma 1. Let A be a CA,Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N andASLstate formulasΦ. Then, the following statements are equivalent:

(a) q |= EN〈〈α〉〉Φ
(b) 〈q,z0〉 |= EN∪{Astop}♦(aΦ ∧ accept)
(c) There exists a finite-memoryN-strategyS for A that is winning for〈q,〈〈α〉〉Φ〉

Lemma 2. Let A be a CA,Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N andASLstate formulasΦ. Then, the following statements are equivalent:

(a) q |= EN[[α]]Φ

(b) 〈q,z0〉 |= EN∪{Astop}�(accept→ aΦ)

(c) there exists a finite memoryN-strategyS which is winning for〈q, [[α]]Φ〉

Thanks to lemmas 1 and 2 the satisfaction setsSat(EN〈〈α〉〉Φ) andSat(EN[[α]]Φ) can
be computed by means of a reduction to the model checking problem for theEN-
operator in combination with the eventually- and always-modalities. More precisely,
we first have to construct a DFAZ for α, then built the productA ⊲⊳N,Φ Z and finally
apply the algorithm for until and release respectively, to compute the satisfaction sets
for EN∪{Astop}♦(aΦ∧accept) andEN∪{Astop}�(accept→aΦ) in the product. Further-
more the memoryless(N∪ {Astop})-strategies for the product yield finite-memory win-
ningN-strategies inA for the objectives〈〈α〉〉Φ and[[α]]Φ, respectively.
Assuming thatSat(Φ) has already been computed the time complexity for computing
Sat(EN〈〈α〉〉Φ) andSat(EN[[α]]Φ) is linear in the size of CAA and the DFAZ for α
(which can be exponential in the length ofα). However, when restricting to theATL-
fragment ofASLwhich just uses the standard path modalitiesU , R and©, but not〈〈α〉〉

12

or [[α]], then the worst complexity of theASLmodel checking algorithm is the same as
for standardATL, i.e., linear in the size ofA and the length of the formula.

We conclude this section by a simple observation concerningthe case thatα is a
√

-free
expression (i.e., does not contain a subexpression of the formβ;

√
). In fact, for

√
-free

expressions, the “best” strategy for theN-agents to ensure[[α]]Φ is to stop the data flow
whenever possible. This is formalized in the following lemma.

Lemma 3 (Winning strategies for
√

-free expressions).Let Sstopbe the memoryless
N-strategy given bySstop(q) = {stop}∪ {c ∈ CIO : Nodes(c)∩N = ∅} for all statesq.
Then, for each

√
-free stream expressionα and stateq we have:

q |= EN[[α]]Φ iff Sstop is winning for〈q, [[α]]Φ〉.

Thus, ifα is
√

-free then the setSat(EN[[α]]Φ) can be computed by considering the sub-
automatonA ′ of A that results by the memoryless strategySstop and then computing
the satisfaction set forSatA ′(∀[[α]]Φ) in A ′. This can be done by means of aBTSL
model checker [18].

5 ASL with Fairness

The concept of fairness serves to rule out pathological behaviors, where certain liveness
properties are violated, although they are supposed to hold[14]. The nondeterminism
within our multi-player setting demand for someASLfairness assumptions. To illustrate
the need for some fairness assumptions, we reuse the deadlock example (2). One would
expect that theASLstate formulaEB♦¬∃©true would be fulfilled, since the memory-
less strategyS, which tries to write onB wheneverq0 is reached during an execution
should be winning for〈q0,♦¬∃©true〉. But

π= q0
c1−→ q1

c2−→ q0
c1−→ . . .∈ Paths(q0,S) andπ 6|= ¬∃©true.

The goal of this section is to introduce some fairness assumptions to exclude such un-
desirable behaviors from our observations.

Definition 6 (〈N,S〉-fairness). Let A = 〈Q,N,−→,Q0,AP,L〉 be a CA,N ⊆ N a

node-set,S anN-strategy, andπ = q0
c1−→ q1

c2−→ . . . aS-path inA. Thenπ is called
(strongly)〈N,S〉-fair if eitherπ is finite or for allc ∈ CIO we have:

∞

∃ i> 0. c ∈ CIO(qi)∩S(π ↓ i) andNodes(c) ⊆N implies
∞

∃ i> 0. ci = c,

where
∞

∃ i means ”there exists infinitely manyi”. We write FairPaths〈N,S〉(q) for all
〈N,S〉-fair paths starting inq andFairPaths〈N,S〉(A) for the set of〈N,S〉-fair paths.

In the above example,π = q0
c1−→ q1

c2−→ q0
c1−→ . . . 6∈ FairPaths〈{B},S〉(q0) becauseS

is willing to write infinitely often onB, but no write operation is ever executed. The
semantics of the fairASLpath formulas is the same as forASLwithout fairness (see
section 4.1).

13

The semantics for fairASLstate formulas also corresponds to the one without fairness
except for:

q |=fair ENϕ iff there is anN-strategyS s.t. for allπ ∈ FairPaths〈N,S〉(q) : π |=ϕ

The underlying model checking algorithms need to be modifiedand now rely on the
bottom up computation of the setsSatfair(Ψ) = {q∈Q | q |=fair Ψ} for all subformulasΨ.
The computation forSatfair(EN(Φ1RΦ2)) does not involve any modification at all, as
shown in the following lemma.

Lemma 4 (Release with fairness).Let A be a CA,N⊆ N a node-set,q ∈Q a state in
A andΦ1,Φ2 ASLstate formulas. Thenq |=fair EN(Φ1RΦ2) iff q |= EN(Φ1RΦ2).

The computation ofSatfair(EN(Φ1UΦ2)) relies on an iterative SCC-calculation in sub-
graphs ofA. The following lemma emerges that the remaining fair computation of
Satfair(EN〈〈α〉〉Φ) andSatfair(EN[[α]]Φ) can be reduced to eventually and always in the
productA ⊲⊳ Z.

Lemma 5 (Fairness for ASL I/O-stream expression formulas). Let A be a CA,
N⊆ N a node-set,α a regular I/O-stream expression,Z a deterministic CA forα, and
letΦ beASLstate formula. Then, the following observation holds for all statesq ∈Q.

i) q |=fair EN〈〈α〉〉Φ in A iff 〈q,z0〉 |=fair EN∪{Astop}♦(accept∧aΦ) in A ⊲⊳ Z.
ii) q |=fair EN[[α]]Φ iff 〈q,z0〉 |=fair EN∪{Astop}�(accept→ aΦ) in A ⊲⊳ Z.

6 Conclusion and Future Work

This paper introduces a framework to verify alternating-time properties for a multi-
player games derived from CA. The introduced concurrent game semantics captures
any complex behavior caused by synchronous and asynchronous peer-to-peer com-
munication, mutual dependencies of I/O-operations and also data-dependencies. Since
this game structure is non-standard it takes numerous nontrivial adaptations of theATL
model checking algorithm. In future work we will drop our assumption onperfect infor-
mationandperfect recallto switch to a more realistic view for exogenous coordination
taking the local view [5, 7, 16, 17, 21, 11, 22] into account. In future work we will con-
siderobservation-based strategiesin case ofincomplete information.
Apart from asking for the existence or absence of a winning strategy for a temporal
property the question might raise, if there is a way of connecting the components to
make this property hold. This directly leads to the controller synthesis problem where
if possible a controlling CA is put in parallel with the othercomponents to ensure the
intended behavior. One step further we would like to build the Reo network which glues
those components the intended way by using the synthesis approach described in [4].

14

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Journal of the
ACM, 49:672–713, 2002.

2. F. Arbab. Reo: A channel-based coordination model for component composition.Mathe-
matical Structures in Computer Science, 14(3):329–366, 2004.

3. F. Arbab, C. Baier, F. de Boer, and J.J.M.M. Rutten. Modelsand temporal logics for timed
component connectors. InProc. of SEFM, pages 198–207. IEEE CS Press, 2004.

4. F. Arbab, C. Baier, F. de Boer, J.J.M.M. Rutten, and M. Sirjani. Synthesis of Reo circuits for
implementation of component connector automata specifications. InProc. of COORDINA-
TION, volume 3454 ofLNCS, 2005.

5. S. Azhar, G.L. Peterson, and J.H. Reif. On multiplayer non-cooperative games of incomplete
information: Part 1&2. Technical report, Durham, NC, USA, 1991.

6. C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten. Modeling component connectors in Reo
by constraint automata. InScience of Computer Programming 61, pages 75–113., 2006.

7. K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin.Algorithms for omega-regular
games with imperfect information.CoRR, abs/0706.2619, 2007.

8. E.M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications.ACM TOPLAS, 8(2):244–263, 1986.

9. L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. InProc. of LICS, pages
141–154, Jan. 2000.

10. L. de Alfaro and T.A. Henzinger. Interface automata. InFSE Proc, pages 109–120. ACM
Press, 2001.

11. M. de Wulf, Laurent Doyen, and Jean-François Raskin. A lattice theory for solving games
of imperfect information. InHSCC, pages 153–168, 2006.

12. M. J. Fischer and R.J. Ladner. Propositional dynamic logic of regular programs.Journal of
Computer and System Science, 8:194–211, 1979.

13. David Fitoussi and Moshe Tennenholtz. Choosing social laws for multi-agent systems: min-
imality and simplicity.Artif. Intell., 119(1-2):61–101, 2000.

14. N. Francez.Fairness. Springer-Verlag, 1986.
15. R. Grosu and B. Rumpe. Concurrent timed port automata. Technical Report TUM-I9533,

Techn. Univ. München, 1995. http://www4.informatik.tu-muenchen.de/reports/.
16. W.v.d. Hoek, M. Roberts, and M. Wooldridge. Knowledge and social laws. InAAMAS, pages

674–681, 2005.
17. W.v.d. Hoek and M. Wooldridge. Cooperation, knowledge,and time: Alternating-time tem-

poral epistemic logic and its applications.Studia Logica, 75(1):125–157, 2003.
18. S. Klüppelholz and C. Baier. Symbolic model checking for channel-based component con-

nectors. InProc. of FOCLASA 2006, volume 175(2) ofENTCS, pages 19–37, 2007.
19. S. Klüppelholz and C. Baier. Alternating-Time Stream Logic for Multi-Agent Sys-

tems. Technical report, Technical University Dresden, 2008. http://wwwtcs.inf.tu-
dresden.de/∼klueppel/ASLKB2008.pdf.

20. N. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, 1989.

21. J.H. Reif. The complexity of two-player games of incomplete information.J. Comput. Syst.
Sci., 29(2):274–301, 1984.

22. P.Y. Schobbens. Alternating-time logic with imperfectrecall. InProc. of LCMAS, volume
85(2) ofENTCS, pages 1–12, 2004.

23. P. Wolper. Specification and synthesis of communicatingprocesses using an extended tem-
poral logic. InProc. of POPL, pages 20–33, 1982.

24. M. Wooldridge. Social laws in alternating time. InDEON, page 2, 2004.

15

A Appendix

Definition 7 (I/O-constraints (IOC)). We defineCIO(tt)
def
= CIO, CIO(ff)

def
= ∅, and for

the literalsA and¬A:

CIO(A)
def
=

{
c∈ CIO : A∈ Nodes(c)

}
andCIO(¬A)

def
=

{
c∈ CIO : A /∈ Nodes(c)

}
.

The I/O-constraints(dA1, . . . ,dAk
)∈D impose conditions for the written and read data

items. That is,CIO((dA1, . . . ,dAk
) ∈D) agrees with the set

{
c ∈ CIO : {A1, . . . ,Ak} ⊆ Nodes(c),(c(A1), . . . ,c(Ak)) ∈D

}
.

Conjunction and disjunction have their standard meaning, i.e.,

CIO(ioc1 ∧ ioc2)
def
= CIO(ioc1)∩CIO(ioc2)

CIO(ioc1 ∨ ioc2)
def
= CIO(ioc1)∪CIO(ioc2)

�

Definition 8 (Finite memory stratiegies).A finite-memoryN-strategy is a tupleM =

(Modes,∆,µ,m0), where

– Modesis a finite set (of so-called modes),
– m0 ∈ Modesthe starting mode,
– µ :Q×Modes→ 2CIO∪ {stop} the decision function, and
– ∆ : Modes× (Q×CIO×Q) → Modesthe transition function.

The associatedN-strategySM is given by:

SM

(

q0
c1−→ . . .

ci−→ qi

)

= µ
(

qi,∆∗(m0,q0
c1−→ . . .

ci−→ qi)
)

where∆∗(m,q0
c1−→ q1) = ∆(m,q0

c1−→ q1) and

∆∗(m,q0
c1−→ q1

c2−→ . . .
ci−→ qi

)

= ∆∗(∆(m,q0
c1−→ q1), q1

c2−→ . . .
ci−→ qi

)

.

A memoryless strategy is a finite-memory strategy with a single modem0.
�

Lemma 6 (Correctness of the Pre-operator).Pre(P,N) =
{
q ∈Q : q |= EN©P

}
.

Proof. “⊆”: Suppose thatq ∈ Pre(P,N). Let S be a memorylessN-strategy such that

S(q) = {c ∈ CIO : Nodes(c)∩N= ∅} ∪
{c ∈ CIO(q) : Nodes(c) ⊆N ∧ Post[c](q) ⊆ P}

Then, {c ∈ S(q) : Nodes(c) ⊆ N} 6= ∅ by condition (2) andPost[c](q) ⊆ P for all
c ∈ S(q) ∩ CIO(q) by condition (1). Hence, eachS-complete executionη from q

starts with a transitionq
c−→ p wherec ∈ S(q)∩ CIO(q). But thenπ |= ©P for all

π ∈ Paths(q,S). Thus,S yields a witness forq |= EN©P.

“⊇”: Suppose now thatq |= EN©P. We have to check conditions (1) and (2) in defini-
tion 5. LetS be a memorylessN-strategy winning for〈q,©P〉.

16

(1) Letc ∈ CIO(q) such thatNodes(c)∩N= ∅ and letp ∈ Post[c](q). By the require-
ments forN-strategies, we havec ∈ S(q). Letπ be an arbitraryS-path that starts
with the transitionq

c−→ p. Sinceπ |= ©P we getp ∈ P.
(2) If q is terminal then the executionq of length 0 cannot beS-complete, since

q

√
−→ q 6|= ©true and©P holds for allS-paths fromq. Hence, there exists a con-

current I/O-operationc ∈ CIO(q)∩S(q) such thatNodes(c) ⊆N. We now show
thatPost[c](q) ⊆ P. For each statep ∈ Post[c](q) there exists aS-pathπ that starts
with the transitionq

c−→ p. Asπ |= ©P we getp ∈ P.
�

Algorithms (1) and (2) show how the satisfaction sets forEN(Φ1UΦ2) andEN(Φ1RΦ2)

can be computed together with a memorylessN-strategyS that is winning for all states
q whereEN(Φ1UΦ2) or EN(Φ1RΦ2)) holds.

Algorithm 1 Algorithm for computingSat
(

EN(Φ1UΦ2)
)

;

P0 := Sat(Φ2);
i := 0;
repeat
Pi+1 := Pi ∪

(

Sat(Φ1)∩Pre(Pi,N)
)

;
for all statesp ∈ Pi+1 \Pi do

S(p) :=
{
c ∈ CIO : Nodes(c)∩N = ∅ ∨ ∅ 6= Post[c](p) ⊆ Pi

}
;

end for
i := i+1;

until Pi = Pi−1;
for all statesp ∈ (Q\Pi)∪Sat(Φ2) do

S(p) := CIO∪ {stop};
end for
returnPi; (* Pi = Sat(EN(Φ1UΦ2)) *)

Lemma 7 (Correctness of algorithms (1) and (2)).Let A be a CA as before,N⊆ N

a node-set and letΦ1 andΦ2 beASLstate formulae. Then:

(a) Algorithm 1 correctly returns the setSat(EN(Φ1UΦ2)) and the computed memo-
rylessN-strategyS is winning for all statesq ∈ Sat(EN(Φ1UΦ2)) andASLpath
formula(Φ1UΦ2).

(b) Algorithm 2 correctly returns the setSat(EN(Φ1RΦ2)) and the computed memo-
rylessN-strategyS is winning for all statesq ∈ Sat(EN(Φ1RΦ2)) andASLpath
formula(Φ1RΦ2).

Proof. Both algorithms rely on the standard iterative approach to compute least and
greatest fixed points of monotonic operators. This yields that the returned setsPi agree
with the satisfaction setSat(EN(Φ1UΦ2)) andSat(EN(Φ1RΦ2)), respectively. It re-
mains to check that the computed strategies are winning.

17

Algorithm 2 Algorithm for computingSat
(

EN(Φ1RΦ2)
)

;

for all statesp ∈Q do
S(p) := CIO∪ {stop};

end for
P0 := Sat(Φ2);
i := 0;
repeat
Pi+1 := Pi ∩

(

Sat(Φ1)∪Pre(Pi,N)
)

;
for all statesp ∈ Pi+1 \Sat(Φ1) do

S(p) := S(p)\ {c ∈ CIO(p) : Post[c](p) 6⊆ Pi };
end for
i := i+1;

until Pi = Pi−1;
returnPi; (* Pi = Sat(EN(Φ1RΦ2)) *)

(a) LetPj = Sat(EN(Φ1UΦ2)). We first observe that if stateq ∈ Pi+1 \Pi thenq ∈
Pre(Pi,N). By the definition of the Pre-operator and the definition ofS(q) we ob-
tain thatPost[c](q)⊆ Pi for all c∈S(q) and thatS(q)∩{c∈ CIO(q) : Nodes(c)⊆
N} 6= ∅. From this, we get by induction onn that for each finiteS-execution

η = q0
c0−→ q1

c1−→ . . .
cn−→ qn

such thatq0 |= EN(Φ1UΦ2) andqi 6|=Φ2 for 0 6 i6 n the following two condi-
tions hold:

– η is notS-complete, i.e., there is ac∈S(qn)∩CIO(qn) with Nodes(c) ⊆N.
– There exist indicesj> j0> j1> j2> . . .> jn such thatqi ∈ Pji

for 0 6 i6 n.

As Pi ⊆ Sat(Φ1) for i > 1 andP0 = Sat(Φ2) we obtain thatπ |= (Φ1UΦ2) for
eachS-path that starts in a stateq0 ∈ Pj = Sat(EN(Φ1UΦ2)).

(b) LetPj = Sat(EN(Φ1RΦ2)). For the statesq∈ Pj∩Sat(Φ1) we haveq |=Φ1∧Φ2

(asPj ⊆ Pj−1 ⊆ . . .⊆ P0 = Sat(Φ2)) and thereforeπ |= (Φ1RΦ2) for all pathsπ
starting inq.
If q ∈ Pj \Sat(Φ1) then for allc ∈ S(q) we havePost[c](q) ⊆ Pj (by definition of
S) andq ∈ Pre(Pj,N). The definition of the Pre-operator yields the existence of a
concurrent I/O-operationc∈ CIO(q) such thatNodes(c) ⊆N andPost[c](q) ⊆ Pj.
But thenc ∈ S(q), and eachS-execution ending inq is S-incomplete.

These two observations yield that eachS-pathπ = q0
c1−→ q1

c2−→ . . . ∈ Paths(q0,S)

starting in a stateq0 ∈ Pj is either infinite and consists of states inPj \Sat(Φ1) or has

a prefixq0
c1−→ . . .

cn−→ qn whereq0, . . . ,qn−1 |=Φ2 andqn |=Φ1 ∧Φ2. In both cases,
we haveπ |= (Φ1RΦ2).

�

For the following observations on the properties of the product please notice thatδ(z,
√

)∈
{zaccept,zreject}. Hence, with the corresponding two transition rules a stateis entered

18

whereZ is in one of its special stateszaccept or zreject. For technical reasons we add
self-loops with labelc∅ for such states:

〈q,zaccept〉
c∅−→ 〈q,zaccept〉 〈q,zreject〉

c∅−→ 〈q,zreject〉

These transitions ensure that all paths in the product that eventually enter a state〈q,z〉
wherez ∈ {zaccept,zreject} are infinite and repeat state〈q,z〉 forever. For each transition
in the product (obtained by one of the above composition rules) we define its projection
to A as follows.

– If 〈q,z〉 c−→ 〈q ′,z ′〉 arises by applying rule (3) then itsA-projection isq
c−→A q

′.
– If 〈q,z〉 c−→ 〈q,z ′〉 (wherez ′ ∈ {zaccept,zreject} andc ∈ {c∅,cstop}) is obtained from

rule (4) or rule(5) then theA-projection isq
√
−→A q.

– TheA-projection of the pseudo-transition〈q,z〉
√
−→ 〈q,z〉 that might appear at the

end of a finite path inA ⊲⊳N,Φ Z is q
√
−→A q.

Given a pathπ̃ in A ⊲⊳N,Φ Z that does not enter a state of the form〈q,zaccept〉 or
〈q,zreject〉 then we define theA-projectionprojA(π̃) as the unique path inA that results
by taking theA-projection of all transitions iñπ. For a pathπ̃ that eventually enters a

state of the form〈q,z〉 with z ∈ {zaccept,zreject} we ignore the (infinite) suffix〈q,z〉 c∅−→
〈q,z〉 c∅−→ . . . and defineprojA(π̃) as theA-projection of the prefix ofπ that leads to
〈q,z〉. Similarly, we define theZ-projectionprojZ(π̃) as an infinite or finite sequence of
elements inZ of the same length asprojA(π̃). Then, ifπ̃ starts in a state〈q0,z0〉 (where
z0 is the initial state ofZ) thenprojZ(π̃) is the run for the I/O-stream ofprojA(π̃) in Z.
The definitions of the projections are extended for executions (i.e., prefixes of paths) in
the obvious way. From now on, we omit the subscriptN andΦ and simply writeA ⊲⊳ Z

for the product whenever they are clear from the context.

Lemma 8 (Properties of the product).

(i) If 〈q,z〉 is terminal inA ⊲⊳N,Φ Z then (a)q is terminal inA, (b) there is a concurrent
I/O-operationc ∈ CIO(q) such that∅ 6= Nodes(c) ⊆N, and (c)cstop is enabled in
〈q,z〉.

(ii) If π̃ is a path inA ⊲⊳N,Φ Z thenprojA(π̃) is a path inA.
(iii) For each pathπ̃ in the product starting in a state〈q,z0〉 we have:π̃ |= ♦(aΦ ∧

accept) iff projA(π̃) |= 〈〈α〉〉Φ.
(iv) For each path̃π in the product starting in a state〈q,z0〉 we have:π̃ |= �(accept→

aΦ) iff projA(π̃) |= [[α]]Φ.
(v) Let S be anN-strategy forA andT an(N∪ {Astop})-strategy forA ⊲⊳N,Φ Z such

that for all finite executions̃η in A ⊲⊳N,Φ Z starting in a state〈q,z0〉 the following
conditions hold:
a) If c : N → (Data∪ {⊥}) is a concurrent I/O-operation for node-setN thenc ∈

T(η̃) iff c ∈ S(projA(η̃))

b) cstop∈ T(η̃) iff stop∈ S(projA(η̃))

c) stop/∈ T(η̃)

19

then theA-projections of theT-paths starting in a state〈q,z0〉 are exactly theS-
paths starting inq.

Proof. ad (i).Let 〈q,z〉 be a terminal state in the product.

– Stateq is terminal inA. This is due to the fact that each transitionq
c∅−→ p in A can

be lifted to a transition〈q,z〉 c∅−→ 〈p,δ(z,c∅)〉 in the product.
– There is some concurrent I/O-operationc ∈ CIO(q) such thatNodes(c) ⊆ N, as

otherwise rule (4) would yield thatc∅ is enabled in〈q,z〉.
– Furthermore,cstop∈CIO(〈q,z〉). This can be seen as follows. We havec∅ /∈CIO(q)

(asq is terminal inA). Suppose by contradiction thatcstop /∈ CIO(〈q,z〉). Then,
there is noc ∈ CIO(q) such thatNodes(c)∩N 6= ∅ (premise of rule (5)). But then
Nodes(c)∩N = ∅ for all c ∈ CIO(q) and (asc∅ /∈ CIO(q)) there is noc ∈ CIO(q)

such thatNodes(c)⊆N. But then rule (4) yieldsc∅ ∈ CIO(〈q,z〉). This contradicts
the assumption that〈q,z〉 is terminal in the product.

ad (ii). By (i) we get that all paths in the product are infinite or end ina state〈q,z〉
whereq is terminal inA andcstop is enabled in〈q,z〉. The projection of an infinite
pathπ̃ in the product that never enters a state in

S√ def
=

{
〈q,zaccept〉, 〈q,zreject〉 : q ∈Q

}

is an infinite path inA, since all their transitions arise by rule (3) (i.e., their labels are
concurrent I/O-operations for the original node-setN). The same holds for all finite
paths in the product that do not enterS√. They end in a terminal state〈q,z〉 of the
product. But thenq is terminal inA and theA-projection is a finite path inA. Paths in
A ⊲⊳N,Φ Z that eventually enter a state inS√ are infinite, but they are projected to finite
paths inA.

ad (iii). Let π̃ be a path in the product starting in a state〈q,z0〉 and letπ
def
= projA(π̃)

be itsA-projection.

– Suppose first that̃π |= ♦(aΦ ∧ accept). Then,π̃ has a finite prefix that leads to
a state〈p,z〉 where(aΦ ∧ accept) holds. Hence,p |= Φ and z ∈ ZF. Let n be
the length of this prefix,z0,z1, . . . ,zn be the sequence of states obtained by the
projectionprojZ(π̃ ↓ n) andc1 . . .cn its I/O-stream. We may suppose thatn6 |π|.
(Note that paths that eventually enter a state〈p,z〉 ∈ S√ stay in this state〈p,z〉
forever.) Then, we have:

• c1 . . .cn = ios(π ↓ n)

• z0,z1, . . . ,zn is the run forc1 . . .cn in Z andzn = z ∈ ZF

But thenc1 . . .cn is accepted byZ and we getc1 . . .cn ∈ IOS(α). Furthermore, the
last state ofπ ↓ n is p. SinceΦ holds inp, this yieldsπ |= 〈〈α〉〉Φ.

– Suppose now thatπ |= 〈〈α〉〉Φ. Then, there is some prefixπ ↓n of π such that its I/O-
streamios(π ↓n) belongs toIOS(α) and the last statep of π ↓n belongs toSat(Φ).
Let z0, . . . ,zn be the run forios(π ↓ n) in Z. Then,zn ∈ ZF and state〈p,zn〉 is the
last state of̃π ↓ n. As (aφ ∧accept) holds in〈p,zn〉 we getπ̃ |= ♦(aΦ ∧accept).

20

ad (iv). Let π̃ = 〈q0,z0〉
c1−→ 〈q1,z1〉

c2−→ . . . be a path in the product starting in a
state〈q0,z0〉 and letπ

def
= projA(π̃) be itsA-projection.

– Suppose first that̃π |= �(accept→aΦ). Letn6 |π| such thatios(π ↓n)∈ IOS(α).
Then, z0, . . . ,zn is the run for ios(π ↓ n) in Z. Hence,zn ∈ ZF and therefore
〈qn,zn〉 |= accept. As �(accept→ aΦ) holds forπ̃ and〈qn,zn〉 is the(n+1)-st
state ofπ̃ we have〈qn,zn〉 |= aΦ. This yields thatqn satisfiesΦ and therefore
π |= [[α]]Φ.

– Assumeπ |= [[α]]Φ. Letn6 |π̃|. The goal is to show that the(n+1)-st state〈qn,zn〉
of π̃ satisfies(accept→ aΦ). This is obvious, in caseacceptdoes not hold for
〈qn,zn〉. Assume now that〈qn,zn〉 |= accept. Then,zn ∈ ZF.
• If 〈qn,zn〉 6∈ S√ thenn 6 |π| andz0, . . . ,zn is the run forios(π ↓ n) in Z.

As zn ∈ ZF we get thatios(π ↓ n) ∈ IOS(α) and thereforeqn |=Φ. But then,
〈qn,zn〉 |= aΦ.

• If 〈qn,zn〉 ∈ S√ then there is somem6 n such thatm6 |π| and

〈qm,zm〉 = 〈qm+1,zm+1〉 = . . .= 〈qn,zn〉

Then,z0, . . . ,zm is the run forios(π ↓ m) in Z. As zm = zn ∈ ZF we get
that ios(π ↓m) ∈ IOS(α) and thereforeqm |=Φ. But this yields,〈qm,zm〉 =

〈qn,zn〉 |= aΦ.

ad (v).We first show that the projection of eachT-path is aS-path:

– EachT-execution that entersS√ via a transition〈p,z〉 c∅−→ 〈p,δ(z,
√

)〉 is projected

to a finite pathπ that ends with the transitionp
√
−→ p. By the premise of rule (4)

for the product, we get thatNodes(c)\N 6= ∅ for all c ∈ CIO(p). Hence, the prefix
π ↓ n of π (wheren = |π| − 1) leads from some initial stateq0 ∈ Q0 to p and
constitutes aS-complete execution. Hence,π is a finiteS-path.

– EachT-executions that entersS√ via a transition〈p,z〉 cstop−−→ 〈p,δ(z,
√

)〉 is also

projected to a finite pathπ that ends with the transitionp
√
−→ p. Again, letn =

|π|−1. The concurrent I/O-operationcstop belongs toT(η̃) for the prefixη̃= π̃ ↓ n
that leads from the first state〈q,z0〉 of π̃ to 〈p,z〉. By the second assumption on the
relation betweenT andS we get thatstop∈S(η) for the projectionη= projA(η̃).
But sincep is terminal (by the premise of rule (5) in the product) we get that
η= π ↓ n is S-complete. Therefore,π is a finiteS-path.

– We now regard aT-complete finite executioñη that does not visitS√ and ends in
state〈p,z〉. Then,〈p,z〉 is terminal and there is nõc∈ T(η̃)∩CIO(〈p,z〉) such that
Nodes(c̃)⊆N∪{Astop}. Hence, there is noc∈S(η)∩CIO(p) such thatNodes(c)⊆
N. But thenη

def
= projA(η̃) is aS-complete execution and therefore the correspond-

ing pathπ is aS-path.
– Given an infiniteT executioñη that does not enterS√, itsA-projection is an infinite

path inA and therefore aS-path.

This shows that the projections of allT-paths areS-paths.

21

We now regard aS-pathπ in A and show that it is theA-projection of someT-path.
This is obvious ifπ is infinite since then it can be lifted to an infiniteT-path in the
product that does not enterS√. Assume now that

π = q0
c1−→ . . .

cn−→ qn

√
−→ qn

is finite of lengthn+1. Letz0,z1, . . . ,zn,zn+1 be the run for the I/O-streamc1 . . .cn
√

of π. Then,

η̃ = 〈q0,z0〉
c1−→ . . .

cn−→ 〈qn,zn〉

is aT-execution in the product and its projectionη
def
= projA(η̃) = π ↓n is S-complete.

Hence,qn is terminal and at least one of the following two conditions (1) or (2) holds:

(a) stop∈ S(η)

(b) there is no concurrent I/O-operationc ∈ S(η)∩CIO(qn) such thatNodes(c) ⊆N.

If 〈qn,zn〉 is non-terminal thenc∅ is enabled in〈qn,zn〉 because of rule (4) for the
product and we havePost[c∅](〈qn,zn〉) = {〈qn,δ(zn,

√
)〉}. But thenπ is the projection

of the infiniteT-path

η̃
c∅−→ 〈qn,δ(z0,

√
)〉 c∅−→ 〈qn,δ(z0,

√
)〉 c∅−→ . . .

Let us now assume that〈qn,zn〉 is terminal, i.e.,c∅ is not enabled in〈qn,zn〉. Then,
for all c ∈ CIO(qn) we have∅ 6= Nodes(c) ⊆ N (otherwise the premise of rule (4)
applies and〈qn,zn〉 would be non-terminal).

– Suppose that case (a) applies. Then,cstop∈ T(η̃),

η̃
cstop−−→ 〈qn,δ(zo,

√
)〉 c∅−→ 〈qn,δ(z0,

√
)〉 c∅−→ . . .

is an infiniteT-path and its projection isπ.
– Suppose that case (b), but not case (a) applies. That is,stop /∈ S(η) and there is

no concurrent I/O-operationc ∈ S(η)∩CIO(qn) such thatNodes(c) ⊆N. Then,
cstop /∈T(η̃). Hence, there is no concurrent I/O-operationc̃∈T(η̃)∩CIO(〈qn,zn〉)
such thatNodes(c̃) ⊆N∪ {Astop}. But thenη̃ is T-complete and̃η

√
−→ 〈qn,zn〉 is a

T-path and its projection isπ.

�

Lemma 9 (Lemma 1).Let A be a CA,Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in
A, node-setsN ⊆ N and ASLstate formulaeΦ. Then, the following statements are
equivalent:

(a) q |= EN〈〈α〉〉Φ
(b) 〈q,z0〉 |= EN∪{Astop}♦(aΦ ∧ accept)
(c) There exists a finite-memoryN-strategyS for A that is winning for〈q,〈〈α〉〉Φ〉

22

Proof. “(a) =⇒ (b)”: Suppose thatq |= EN〈〈α〉〉Φ and thatS is anN-strategy forA that
is winning for〈q,〈〈α〉〉Φ〉. The goal is to define a corresponding(N∪ {Astop})-strategy
T for A ⊲⊳N,Φ Z. Given a finite executioñη in the product we take itsA-projection
η

def
= projA(η̃)) and define

T(η̃)
def
=

{
S(η) : if stop/∈ S(η)

(S(η)\ {stop}) ∪ {cstop} : otherwise.

Then,T andS are related as required in part (v) of Lemma 8. Hence,T is winning for
〈〈q,z0〉,♦(aΦ ∧accept)〉 by parts (iii) and (v) of lemma 8.

“(b) =⇒ (c):” Suppose〈q,z0〉 |= EN∪{Astop}♦(aΦ ∧ accept). By part (a) of lemma 7
there is a memoryless(N ∪ {Astop})-strategyT for A ⊲⊳N,Φ Z that is winning for
〈〈q,z0〉,♦(aΦ∧accept)〉. We now define a finite-memoryN-strategyM = (Modes,∆,µ,m0)

for A as follows. The set of modes agrees with the state-space ofZ, i.e.,Modes= Z.
The decision functionµ is given by:

µ(q,z)
def
=

{
T(〈q,z〉) : if cstop /∈ T(〈q,z〉)
(T(〈q,z〉)\ {cstop}) ∪ {stop} : otherwise.

The transition relation∆ is defined by∆(z,q
c−→ p)

def
= δ(z,c).

It remains to show thatM is winning for 〈q,〈〈α〉〉Φ〉. In fact,T andM are related as
in part (v) of lemma 8. Again, applying parts (iii) and (v) of lemma 8 we get thatM is
winning for 〈q,〈〈α〉〉Φ〉.

The implication (c)=⇒ (a) is obvious.
�

Lemma 10 (Lemma 2).Let A be a CA,Z = (Z,CIO√,δ,Z0,ZF) a DFA forα, q in
A, node-setsN ⊆ N and ASLstate formulaeΦ. Then, the following statements are
equivalent:

(a) q |= EN[[α]]Φ

(b) 〈q,z0〉 |= EN∪{Astop}�(accept→ aΦ)

(c) there exists a finite memoryN-strategyS which is winning for〈q, [[α]]Φ〉

Proof. Using parts (iv) and (v) of lemma 8, the argument is analogousto the proof of
lemma 9.

�

Lemma 11 (Lemma 3).Let Sstop be the memorylessN-strategy given bySstop(q) =

{stop}∪ {c ∈ CIO : Nodes(c)∩N = ∅} for all statesq. Then, for each
√

-free stream
expressionα and stateq we have:

q |= EN[[α]]Φ iff Sstop is winning for〈q, [[α]]Φ〉.

23

Proof. The implication=⇒ is obvious by the semantics for the modalityEN. Sup-
pose now thatq |= EN[[α]]Φ. The goal is to show thatSstop is a winning strategy for
〈q, [[α]]Φ〉. We pick a winning strategyT for 〈q, [[α]]Φ〉. That is,π |= [[α]]Φ for all
T-pathsπ that start in stateq. By definition ofSstop we get that for each incomplete

Sstop-executionη = q0
c1−→ . . .

ci−→ qi we have:

Sstop(qi)∩CIO(qi) ⊆ T(η)

Hence, all incomplete executions inExecfin(q,Sstop) are prefixes ofT-executions. Thus,
if η ∈ Execfin(q,Sstop) andη is an incompleteT-execution starting inq then we have:

if ios(η) ∈ IOS(α) impliesp |=Φ wherep is the last state ofη.

In particular, this yieldsπ |= [[α]]Φ for all infinite Sstop-paths that start inq. As α is√
-free, none of the I/O-streams inIOS(α) contains the termination symbol

√
. Hence,

for each finiteSstop-pathπ we haveios(π) /∈ IOS(α) and thereforeπ |= [[α]]Φ.
�

For the computation ofSatfair(EN(Φ1UΦ2)) we define the following function:

Γ(N,Φ,P)
def
= Sat

(

EN

(

�(Φ∧¬P) ∧
∨

c∈CIO(N)

(�♦ac ∧∀[[c]]P)
)

)

whereac is a new atomic proposition to reason about the enabledness of a concurrent
I/O-operationc in a certain stateq such thatac ∈ L(q) iff c ∈ CIO(q). In other words,
Γ(N,Φ,P) computes the set of all statesq ∈Q such that there is a strategy ensuring to
stay inSat(Φ)\P forever. But at the same time there exists a concurrent I/O-operationc,
consisting ofN-controllable nodes only, which is infinitely often enabledand guaran-
tees to move into aP state in the next step once it has been chosen.

Lemma 12 (Until with fairness). Let A be a CA,N ⊆ N a node-set and letΦ1 and
Φ2 beASLstate formulae. AssumingN-fairness, algorithm 3 correctly returns the set
Satfair(EN(Φ1UΦ2)) and the computed memorylessN-strategyS is winning for all
statesq ∈ Satfair(EN(Φ1UΦ2)) andASLpath formula(Φ1UΦ2).

Proof. LetP :=Pj be the set of states andS be theN-strategies returned by algorithm 3.
We will show the following:

q ∈ P ⇔ q |=fair EN(Φ1UΦ2).

“⇒”: Let q ∈ Pi+1\Pi. Thenq came intoPi+1 ⊆ P because

a) Eitherq ∈ P0 = Sat(Φ2), thenq |=fair EN(Φ1UΦ2).
b) Orq ∈ Sat(Φ1)∩Pre(Pi,N). Let

Q ′ :=
⋃

c∈S(q)

Post[c](q)

be the set of successor states. But thenq |=Φ1, andQ ′ ⊆ Pi and we may apply the
same arguments for all statesq ′ ∈Q ′.

24

Algorithm 3 Algorithm for computingSatfair

(

EN(Φ1UΦ2)
)

;

P0 := Sat(Φ2);
i := 0;
repeat
P := Pi;
repeat
Pi+1 := Pi ∪

(

Sat(Φ1)∩Pre(Pi,N)
)

;
for all statesp ∈ Pi+1 \Pi do

S(p) :=
{
c ∈ CIO : Nodes(c)∩N = ∅ ∨ ∅ 6= Post[c](p) ⊆ Pi

}
;

end for
i := i+1;

until Pi = Pi−1;
Pi+1 := Pi ∪ Γ(N,Φ1,Pi);
for all statesp ∈ Pi+1 \Pi do

S(p) :=
{
c ∈ CIO : Nodes(c)∩N = ∅ ∨ ∅ 6= Post[c](p) ⊆ Pi+1

}
;

end for
i := i+1;

until Pi = P;
for all statesp ∈ (Q\Pi)∪Sat(Φ2) do

S(p) := CIO∪ {stop};
end for
returnPi; (* Pi = Satfair(EN(Φ1UΦ2)) *)

c) Orq ∈ Γ(N,Φ1,Pi). Let again

Q ′ :=
⋃

c∈S(q)

Post[c](q)

be the set of successor states. But thenq |=Φ1, andQ ′ ⊆ Pi+1 and we may apply
the same arguments for all statesq ′ ∈Q ′.

“⇐”: Let us assumeq 6∈ P (i.e.q 6∈ Pi for all i ∈ N). But then,

q 6∈ Sat
(

EN

(

(Φ1UP)∨ (�(Φ1 ∧¬P) ∧
∨

c∈CIO(N)

�♦(ac ∧∀[[c]]P))
)

)

Hence, for allN-strategiesS exists a pathπ ∈ Paths(q,S) such that

π 6|= (Φ1UP)∨ ((�(Φ1 ∧¬P) ∧
∨

c∈CIO(N)

�♦(ac ∧∀[[c]]P)).

Let π = q0
c1−→ q1

c2−→ . . . be such a path inPaths(q,S). Thenπ fulfills at least one of
the following two conditions:

i) π |= ¬(Φ1UP) ∧♦(¬Φ1 ∨P). Letqi be the first state ofπ such thatqi 6|=Φ1. In
this caseπ ↓ i can be extended to aN-fair path, which violates(Φ1UP).

25

ii) π |= ¬(Φ1UP) ∧
∧

c∈CIO(N)

♦�(ac → ∃〈〈c〉〉¬P). In this caseπ itself is aN-fair

path violating(Φ1UP).

Consequently for allN-strategiesS there exists a pathπ∈ FairPaths〈N,S〉(q) such that
π 6|= (Φ1UΦ2) andq 6|=fair EN(Φ1UΦ2).

�

Lemma 13 (Lemma 4).Let A be a CA,N ⊆ N a node-set and letΦ1 andΦ2 be
ASLstate formulae. Then, the following observation holdsq |=fair EN(Φ1RΦ2) iff q |=

EN(Φ1RΦ2) for all statesq ∈Q.

Proof. “⇐”: This is obvious sinceFairPaths〈N,S〉(q) ⊆ Paths(q,S).
“⇒”: Let us assume thatq |=fair EN(Φ1RΦ2) butq 6|= EN(Φ1RΦ2).
Let S be anN-strategy s.t.π ∈ FairPaths〈N,S〉(q) implies thatπ |= (Φ1UΦ2), and

π = q0
c1−→ . . .∈ Paths(q,S) a path s.t.π 6|= (Φ1RΦ2). This pathπ can not beN-fair

(i.e.π ∈ FairPaths〈N,S〉(q)), since this contradicts our assumption.
Letqi be the first state ofπ s.t.qi 6|=Φ2. Then the executionη= π ↓ i can be extended
to aN-fair pathπ ′ ∈ Paths(q,S). Obviouslyπ ′ 6|= (Φ1RΦ2), which again contradicts
our assumption. The extension ofη is done in the following manner. Whenever there
is ac ∈ CIO(q ′

j)∩S(η
·−→ . . .

·−→ q ′
j) with ∅ 6= Nodes(c) ⊆N then append (one of) the

transition(s)q ′
j

c−→ q ′
j+1 to the executionη, otherwise chose one of the enabled I/O-

operationsc ∈ CIO(q ′
j). Once the execution becomes maximal the corresponding path

is finite and thereforeN-fair (see condition (1) of definition 6). Otherwise the resulting
path becomesN-fair, too (see condition (2) of definition 6).

�

Lemma 14 (Lemma 5). Let A be a CA,N ⊆ N a node-set,α a regular I/O-stream
expression,Z a deterministic CA forα, and letΦ be ASL state formula. Then, the
following observation holds for all statesq ∈Q:

i) q |=fair EN〈〈α〉〉Φ in A iff 〈q,z0〉 |=fair EN∪{Astop}♦(accept∧aΦ) in A ⊲⊳ Z.
ii) q |=fair EN[[α]]Φ iff 〈q,z0〉 |=fair EN∪{Astop}�(accept→ aΦ) in A ⊲⊳ Z.

Proof. The proof comes from combining the arguments of lemma 9, 10, 12, and 13.
�

26

