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Abstract

Fault-based testing is a technique where testers antic-
ipate errors in a system under test in order to assess or
generate test cases. The idea is to have enough test cases
capable of detecting these anticipated errors. This paper
presents a method of fault-based test case generation for
pre- and postcondition specifications. Here, errors are an-
ticipated on the specification level by mutating the pre- and
postconditions. We present the underlying theory by giving
test cases a formal semantics and translate this general test-
ing theory to a constraint satisfaction problem. A prototype
test case generator serves to demonstrate the automatiza-
tion of the method. The current tool works with OCL spec-
ifications, but the theory and method are general and apply
to many state-based specification languages.

1 Introduction

Testing is a highly controversial subject with respect to
verification. The obvious reason is that, in general, it can-
not demonstrate the absence of faults. This can only be
achieved by (formal) correctness proofs. However, in prac-
tice testing is still the most popular verification technique.
Taking into account the obvious need of practitioners, For-
mal Methods have included testing into their realm over the
last decade. This research placed testing on a solid foun-
dation leading to a series of testing methods and tools that
work on the specification level.

Basically, what has happened is to give up the in general
and clarify under which circumstances (hypothesis) testing
can serve as a verification vehicle in the scientific sense.
For example, assuming an equivalence relation (possibly
derived from a formal specification), testing of represen-
tative input values can be defended. Another example, is
model-checking, where the concentration on finite domains
and abstraction in general, has led to successful exhaustive
testing techniques.

In the current paper yet another test hypothesis will be
exploited: We assume that we can anticipate the possible
errors made by an implementer. This technique is gener-
ally known as fault-based testing and its most prominent
form is mutation testing. Originally in mutation testing, a
program text has been altered (mutated) in order to check
if a given set of test cases is able to detect this change. In
our work, we advance this technique in two directions: (1)
we mutate specifications, not programs, in order to model
errors that may happen during the whole development pro-
cess; (2) we do not only analyze the coverage of given test
cases, but generate test cases that will cover the introduced
faults. The present paper will show that our technique chal-
lenges Dijkstra’s famous sentence about testing, since we
claim: Testing can show the absence of faults, if we have
a knowledge of what can go wrong. Ideas of what can go
wrong, can be systematically derived from formal models
of an implementation. By introducing possible faults, test
cases can be generated that will ensure that this kind of fault
does not survive.

Consider the well-known Triangle example, specified in
Fig. 1. The function Ttype returns the triangle type that
three lengths represent. This specification can be mutated
introducing possible faults like changing a variable’s name
for any other valid name, or changing the order in a nested
if-statement as shown in Fig. 2. The idea is to generate two
test cases a = 1,b = 2,c = 2,result = “isosceles′′ and a =
1,b = 1,c = 1,result = “equilateral′′ that will detect the
two errors (mutations).

context Ttype(a:int,b:int,c:int):String
pre: a>=1 and b>=1 and c>=1 and

a<(b+c) and b<(a+c) and c<(a+b)
post: if ((a=b) and (b=c)) then

result="equilateral" else
if ((a=b) or (a=c) or (b=c)) then
result="isosceles" else
result="scalene" endif endif

Figure 1. Specification of a triangle in OCL.
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context Ttype(a:int,b:int,c:int):String
pre: a>=1 and b>=1 and c>=1 and

a<(b+c) and b<(a+c) and c<(a+b)
post: if((a=a) and (b=c))

then result="equilateral"
else if((a=b) or (a=c) or (b=c))
then result="isosceles"
else result="scalene"
endif

endif

context Ttype(a:int,b:int,c:int):String
pre: a>=1 and b>=1 and c>=1 and

a<(b+c) and b<(a+c) and c<(a+b)
post: if((a=b) or (a=c) or (b=c))

then result="isosceles"
else if ((a=b) and (b=c))
then result="equilateral"
else result="scalene"
endif

endif

Figure 2. Two mutated specifications for the
triangle example.

The first author has developed a general theory of fault-
based testing, in which it can be formally proven that test
cases will detect certain faults. This theory is based on
the general concept of refinement (implementation relation)
and can be instantiated to different semantic frameworks
where this concept exists. The present paper shows an in-
stantiation to pre-postcondition specifications in first-order
logic. A tool has been developed that works on OCL spec-
ifications, giving them a design semantics as used in the
Unifying Theories of Programming [15]. The tool builds on
three pillars: (1) the already mentioned fault-based testing
theory of the first author [4] to state the problem; (2) Dick
and Faivre’s classical work on specification-based testing
[12] to divide the problem; and (3) on Constraint Logic Pro-
gramming [20] to search for solutions. It should be empha-
sized that none of these three is special to OCL and that,
therefore, the presented technique could be equally applied
to any model-oriented specification language, including B,
JML, RAISE, VDM-SL, and Z.

In the following, we describe our approach in detail.
Section 2 briefly introduces the reader to the theory of de-
signs of [15] and to constraint solving. Section 3 links con-
cepts on testing with the theory of designs and presents an
algorithm that generates test cases that will find anticipated
errors in a design. Some results of the use of a prototype are
presented in Section 4. Section 5 discusses related work. Fi-
nally, Section 6 presents our conclusions and some general
directions for future work. Further details can be found in
[17].

2 Preliminaries

Before presenting the testing theory, it is necessary to
clarify the terms used throughout the paper and give the
necessary definitions. In addition, a brief introduction to
constraint solving is given.

2.1 Testing from Specifications

The vocabulary of computer scientists is rich with terms
for naming the unwanted: bug, error, defect, fault, failure,
etc. are commonly used. Here, we adopt the standard ter-
minology as recommended by the IEEE Computer Society:

Definition 2.1 An error is made by somebody. A good syn-
onym is mistake. When people make mistakes during cod-
ing, we call these mistakes bugs. A fault is a representation
of an error. As such it is the result of an error. A failure is a
wrong behavior caused by a fault. A failure can occur when
a fault executes.

In this work we aim to generate test-cases on the basis of
possible errors during the design of software. Examples of
such errors might be a missing or misunderstood require-
ment, a wrongly implemented requirement, or simple cod-
ing errors. In order to represent these errors we will intro-
duce faults into formal specifications. The faults will be
introduced by deliberately changing a design, resulting in
wrong behavior possibly causing a failure.

In this work we restrict ourselves to model-based
(model-oriented) specifications. More precisely, we use the
design calculus of the Unifying Theory of Programming to
assign specifications a precise semantics. Designs are a spe-
cial form of predicates with a pre- and postcondition part,
together with an alphabet. The alphabet is a set of variables
that declares the observation space. The free variables of a
design predicate are a subset of the alphabet and represent
state variables before (undecorated variable names) and af-
ter execution (decorated variable names) of a program. In
addition, special Boolean variables ok and ok′ denote the
successful start and termination of a program. Formally, we
define

Definition 2.2 (Design) Let P and Q be predicates not con-
taining ok or ok′.

P � Q =df (ok∧P) ⇒ (ok′ ∧Q)

A design is a relation whose predicate is (or could be) ex-
pressed in this form.

Implication establishes a refinement order (actually a lat-
tice) over designs. Thus, more concrete implementations
imply more abstract specifications.
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Definition 2.3 (Refinement)

D1 � D2 =df ∀v,w, · · · ∈ A • D2 ⇒ D1 ,

for all D1,D2 with alphabet A.

Alternatively, using square brackets to denote universal
quantification over all variables in the alphabet, we write
[D2 ⇒ D1]. Obviously, this gives the well-known proper-
ties that preconditions are weakened under refinement and
postconditions are strengthened (become more determinis-
tic):

Theorem 2.1 (Refinement of Designs)

[(P1 � Q1) ⇒ (P2 � Q2)] iff

[P2 ⇒ P1] and [(P2 ∧Q1) ⇒ Q2]

For a definition of common operators on designs, like se-
quential composition, conditional, choice, etc., we refer to
[15]. According to Definition 2.1, faults represent errors.
These errors can be introduced during the whole develop-
ment process in all artifacts created. Consequently, faults
appear on different levels of abstraction in the refinement
hierarchy ranging from requirements to implementations.
Obviously, early introduced faults are the most dangerous
(and most expensive) ones, since they may go undetected
into an implementation; or formally, a faulty design may be
correctly refined into an implementation. Again refinement
is the central notion in order to discuss the roles and conse-
quences of certain faults and design predicates that are most
suitable for representing faults.

Definition 2.4 (Design Fault) Given an intended design D,
and an unintended design D′ in which during creation an
error was made. Then, we define a fault in design D′ as the
syntactical deviation from D in D′, if and only if refinement
does not hold:

D �� D′

We call D′ a faulty design.

Consequently, not all errors lead to faults. Here, for be-
ing a fault, a possible (external) observation of this fault
must exist. For example, adding by mistake redundant con-
straints to a design does not result in a faulty design (since
refinement holds). However, changing the alphabet leads to
a faulty design. (detected during type checking). Note also,
the use of the term intended (unintended) in the definition,
instead of correct (incorrect). This is necessary, since the
latter is only defined with respect to a given specification,
but faults can already be present in such specifications from
the very beginning.

2.2 Constraint Solving

The problem of generating test cases from a formal spec-
ification can be represented as a Constraint Satisfaction
Problem (CSP). A constraint satisfaction problem consists
of a finite set of variables and a set of constraints. Each
variable is associated with a set of possible values, known
as its domain. A constraint is a relation defined on some
subset of these variables and denotes valid combinations of
their values. A solution to a constraint satisfaction problem
is an assignment of a value to each variable from its domain,
such that all the constraints are satisfied. Formally, the con-
junction of these constraints forms a predicate for which a
solution should be found. Since, we are interested in special
solutions for input-output relations, we define a solution as
follows:

Definition 2.5 (Solution) Let P(v,v′) be a predicate, with
v and v′ being lists of unprimed and primed free variables.
Given a pair (x,X ′), with x being a list of values of same
length as v and X ′ being a finite set of value lists with the
same length as v′. Then,

(x,X ′) is solution of P iff ∀ x′ ∈ X ′ ·P(x,x′)

We call (x,X ′) a maximal solution, if X ′ is maximal.

A constraint satisfaction problem is always embedded into a
Constraint System. A Constraint System formally specifies
the syntax and semantics of the constraints of interest. It is
defined [20] as a tuple (Σ,D,CT ,C ) where

• Σ is a signature that contains all possible constraint and
function symbols,

• D is a domain together with an interpretation of the
symbols in Σ,

• CT is a non-empty and consistent theory over Σ,

• C are the allowed constraints.

A constraint solver implements an algorithm for solving
well-formed constraints within a CSP in accordance with a
constraint theory. The constraint theory CT defines the se-
mantics of a constraint system and is composed, in our case,
of a set of transformation rules over one or more specific do-
mains. The syntax of well-formed constraints is defined by
the set of allowed constraints C .

Our approach is then to embed the test generation prob-
lem modelled as a CSP into a specially designed and imple-
mented Constraint System. But this is not a novelty because
this approach has been widely explored and implemented.
The novelty in our approach is that we derive the constraints
to be solved from the more general theory of refinement, or
more precisely non-refinement. The constraints presented
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in the next section are the conditions when refinement of
a mutant does not hold. These conditions form an equiva-
lence class of fault-adequate test cases in which every test
case is able to find the associated fault.

3 Fault-based Test Case Generation

3.1 Test Cases

We take the point of view that test cases are specifica-
tions that for a given input define the expected output. Con-
sequently, we define test cases as a sub-theory of designs.

Definition 3.1 (Test Case, deterministic) Let i be the in-
put vector and o be the expected output vector, both being
lists of values, having the same length as the variable lists
v and v′ respectively. Furthermore, equality over value lists
should be defined.

td(i,o) =df v = i � v′ = o

Although sufficient for deterministic programs, test cases
derived from a specification have to take non-determinism
into account. Therefore, we generalize the notion of a test
case as follows:

Definition 3.2 (Test Case, general) Let i be the input vec-
tor and O a possibly infinite set containing the expected out-
put vector(s). Both, i and o, o∈O, are lists of values, having
the same length as the value lists v and v′ respectively.

t(i,O) =df v = i � v′ ∈ O

Previous work of the first author [2] has shown that re-
finement is the key to understand the relation between test
cases, specifications and implementations. Refinement is an
observational order relation, usually used for step-wise de-
velopment from specifications to implementations, as well
as to support substitution of software components. Since
we view test cases as (a special form of) specification, it is
obvious that a correct implementation should refine its test
cases. Thus, test cases are abstractions of an implementa-
tion, if and only if the implementation passes the test cases.
This view can be lifted to the specification level. When test
cases are properly derived from a specification, then these
test cases should be abstractions of the specification. For-
mally, we define:

Definition 3.3 Let T be a set of test cases, S a specification
and I an implementation, all being designs, and

T � S � I

we define

• T as a correct test set with respect to S,

• implementation I passes the test cases in T ,

• implementation I conforms to specification S.

Finding a test case t that detects a given fault is the cen-
tral strategy in fault-based testing. For example, in classi-
cal mutation testing, D is a program and D′ a mutant of D.
Then, if the mutation in D′ represents a fault, a test case t
should be included to detect the fault. Consequently, we can
define a fault-based test case as follows:

Definition 3.4 (Fault-adequate Test Case) Let t be an
input-output test case (possibly non-deterministic). Fur-
thermore, D is a design and D′ its faulty version. Then, t
is a fault-adequate test case when

t � D ∧ (t �� D′)

We say that a fault-adequate test case detects the fault in
D′. Alternatively we can say that the test case distinguishes
D and D′. In the context of mutation testing, one says that
t kills the mutant D′. All the test cases that detect a certain
fault form a fault-adequate equivalence class.

Note that our definitions solely rely on the lattice proper-
ties of designs. Therefore, our fault-based testing strategy
scales up to other lattice-based test models as long as an
appropriate refinement definition is used.

3.2 Test Case Generation Algorithm

From the definition of fault-adequate equivalence class
we have developed an algorithm to generate a test case
which is inside this equivalence class.

Algorithm 1 Given a design D(Pre � Post) and its faulty
design D′(Pre′ � Post ′) as inputs. All variables in their al-
phabet range over finite sets. Then, an input-output test
case T is generated as follows:

Step 1: A test case T is searched by:

1. finding a pair (ic,oc) being a solution of

Pre∧Post ′ ∧¬Post

2. If it exists, then the test case T = t(i,O) is generated
by finding a maximal solution (i,O) of

Pre∧Post ∧ (v = ic)

Step 2: If the former does not succeed, then we look for a
test case T = t(i,O) with (i,O) being a maximal solution of

¬Pre′ ∧Pre∧Post
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The algorithm is designed to produce test cases such that
the original D refines it (T is a positive test case). There-
fore, Step 1 involves two phases: finding a solution ic,oc

and finding the test case t(i,O). In these step, the solution
(ic,oc) represents a counterexample of D � D′, with oc be-
ing one output (from a possible non-empty set of outputs)
that differ from the original. A test case t(ic,oc) would be
a negative test case reporting when a test fails. However,
since we are interested in positive test cases that predict all
the possible outputs according to the original specification,
T includes all outputs O satisfying the postcondition. This
also prevents T from reporting false negatives.

Note that this algorithm is partial, since the search space
over the variables is restricted to a finite domain. We can say
that if no test case is identified after those two steps, then the
original and the mutant specifications are equivalent (in the
context of the finite domains of the CSP).

Next, we show that the test case generated by the algo-
rithm is fault-adequate. Thus, we have to show that the test
case is correct with respect to D as well as it covers the fault
in D′. We split this analysis into two theorems.

Theorem 3.1 (Test Case Correctness) Given a design
D(Pre � Post) and its faulty design D′(Pre′ � Post ′), and a
test case t(i,O) generated by Algorithm 1

t(i,O) � D

Proof. The proof can be split into two cases reflecting
Steps 1 & 2 of the algorithm:

1. From (i,O) is solution of Pre∧Post ∧ (v = ic) it fol-
lows that (i,O) is solution of Pre∧Post. Thus,

t(i,O) � D
= {by Theorem 2.1}

[(v = i) ⇒ Pre] ∧
[(v = i)∧Post ⇒ v′ ∈ O]

= {since (i,O) is solution of (Pre∧Post)
and O is maximal}

true ∧ true
= true

2. follows the same style of reasoning as the first case.

Theorem 3.2 (Fault coverage) Given a design D(Pre �
Post) and its faulty design D′(Pre′ � Post ′), and a test case
t(i,O) generated by Algorithm 1

t(i,O) �� D′

Proof. Again, this proof is split into the two cases of the
algorithm:

1. When (i,O) is solution of Pre∧Post ∧ (v = ic). This
test case is only generated, if (ic,oc) is solution of

(Pre∧¬Post ∧Post ′) exists. We see immediately that
i = ic and {oc}∩O = {} and deduce

t(i,O) �� D′
= {by Theorem 2.1}

¬[(v = i) ⇒ Pre′] ∨
¬[((v = i)∧Post ′) ⇒ (v′ ∈ O)]

= ∃ v• ((v = i)∧¬Pre′) ∨
∃ v,v′ • ((v = i)∧Post ′ ∧ (v′ /∈ O))

= {since solution (ic,oc) is a witness for 2nd. ∃}
∃ v• ((v = i)∧¬Pre′) ∨ true

= true

2. When (i,O) is solution of ¬Pre′ ∧Pre∧Post.

t(i,O) �� D′
= {by Theorem 2.1}

¬[(v = i) ⇒ Pre′] ∨
¬[((v = i)∧Post ′) ⇒ (v′ ∈ O)

= ∃ v• ((v = i)∧¬Pre′) ∨
∃ v,v′ • ((v = i)∧Post ′ ∧ (v′ /∈ O))

= {since i is a witness to 1st. ∃}
true ∨
∃ v,v′ • ((v = i)∧Post ′ ∧ (v′ /∈ O))

= true

It is important to point out that fault-adequacy does not
necessarily mean that a program implementing the faulty
design will be rejected. The reason is non-determinism.
Consider, e.g. D = (x′ > 1), D′ = (x′ > 0) and an im-
plementation P1 = (x′ = 3). Here, D �� D′ and P1 refines
both D and D′. Obviously, the fault-adequate test case
T = t(1,{2,3,4, . . .}) cannot detect any fault (because there
is not one). We can think of P1 as an implementation that
started from a wrong specification D′, but during implemen-
tation the error got corrected (by chance). The idea of hav-
ing T is to prevent cases where the implementer was not so
lucky, like with P2 = (x′ = 1).

4 Example

We return to the Triangle example to illustrate the tech-
nique and the tool’s functionality. The OCL specification
for the Triangle example was already shown in Fig. 1.

Our tool is capable of generating test cases either in
the classic way via DNF partitioning of the (original) OCL
specification or by applying the fault-based algorithm (Al-
gorithm 1). Choosing the DNF partitioning strategy the tool
returns the test cases shown in Fig. 3. Here, for every equiv-
alence class (domain partition) one test case is chosen. The
strategy is to cover each partition.

In contrast to the DNF stategy, the fault-based algo-
rithm generated test cases that cover faults. Generating
the fault-based test cases for the two mutant OCL spec-
ifications in Fig. 2 results exactly in the two test cases
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a=2, b=2, c=1, result=isosceles
a=2, b=3, c=4, result=scalene
a=1, b=1, c=1, result=equilateral
a=2, b=1, c=2, result=isosceles
a=1, b=2, c=2, result=isosceles

Figure 3. DNF-based test cases.

context Ttype(a:int,b:int,c:int):String
pre: a>=1 and b>=1 and c>=1 and

a<(b+c) and b<(a+c) and c<(a+b)
post: if((a=b) and (b=1))

then result="equilateral"
else if((a=b) or (a=c) or (b=c))
then result="isosceles"
else result="scalene"
endif

endif

context Ttype(a:int,b:int,c:int):String
pre: a>=1 and b>=1 and c>=1 and

a<(b+c) and b<(a+c) and c<(a+b)
post: if((a=b) and (b=c))

then result="equilateral"
else if((a=b) or (a=c) or (b=2))
then result="isosceles"
else result="scalene"
endif

endif

Figure 4. Two further mutations.

a = 1,b = 2,c = 2,result = “isosceles′′ and a = 1,b = 1,c =
1,result = “equilateral′′ already presented in Section 1.

Analyzing these results we observe that the tool is gen-
erating valid test cases. Moreover, they are able to detect
these kind of faults. However, also the DNF test cases of
Fig. 3 would discover the two faults represented by the two
mutants. Therefore, one could argue that the fault-based test
cases do not add further value.

However, in general the fault-based strategy has a higher
fault-detecting capability. Consider the two different mu-
tated specifications shown in Fig. 4 below. One can easily
see that the DNF test cases in Fig. 3 are not able to reveal
these faults.

However, the fault-based algorithm generates precisely
those test cases needed to unreveal the faults: a = 2,b =
2,c = 2,result = “equilateral′′ for the first one, and a =
3,b = 2,c = 4,result = “scalene′′ for the second one. Op-
tionally, we may ask the tool to generate all fault-adequate
test cases for every domain partition. Then, the additional
test case a = 1,b = 3,c = 3,result = “isosceles′′ for the sec-
ond mutant is returned as well.

This example, although trivial, demonstrates the automa-
tion of an alternative approach to software testing: Instead
of focusing on covering the structure of a specification,
which might be rather different to the structure of the im-
plementation, one focuses on possible faults. Of course, the
kind of faults, one is able to model depend on the level of

abstraction of the specification — obviously one can only
test for faults that can be anticipated. Finally, it should be
added that the test case generator also helps in understand-
ing the specification. Experimenting with different muta-
tions and generating fault-adequate test cases for them is a
valuable vehicle for validation.

For a larger example on testing the security policy of a
database management system see [17].

5 Related Work

Nowadays, test case generation from software specifica-
tions has become a popular area of research and it is out
of the scope of this paper to provide a complete overview
on the progress made. Perhaps the most prominent con-
tribution leading to a gradual reconciliation between the
areas of software testing and formal methods came from
Gaudel [14]. The most relevant papers to our work include
[12, 7, 16, 5, 11]. In those papers, several techniques have
been applied with a strong predominance of state machine
based techniques. Although different, most of these tech-
niques have one point in common, the use of partition anal-
ysis and Disjunctive Normal Form.

Another related work [1] presents a prototype tool called
UML-CASTING. The approach implemented by this tool
also uses constraint solving for instantiating values for a
particular test case. Furthermore, it uses a similar input
model to our tool. It supports test case sequencing using
information extracted from UML state diagrams. However,
its input model is more restricted than ours in terms of the
constraint language itself and does not include the mutation
approach.

Software testing in general, and mutation testing in par-
ticular, have been introduced in the theory of Refinement
Calculus [2] and in the Unified Theory of Programming [4].
The theoretical part of the presented work is a direct result
of these testing theories.

Others have worked on mutation testing on the specifica-
tion level. To our present knowledge Budd and Gopal were
the first [8]. They applied a set of mutation operators to
specifications given in predicate calculus form. The method
relies on having a working implementation generating out-
put.

Tai and Su [22] propose algorithms of generating test
cases that guarantee the detection of operator errors, but
they restrict themselves to the testing of singular Boolean
expressions, in which each operand is a simple Boolean
variable that cannot occur more than once. Tai [21] ex-
tends this work to include the detection of Boolean operator
faults, relational operator faults and a type of fault involving
arithmetic expressions. However, the functions represented
in the form of singular Boolean expressions constitute only
a small proportion of all Boolean functions.
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Stocks applied mutation testing to Z specifications [19].
He presented the criteria to generate test cases to discrim-
inate mutants, but did not automate his approach. Further-
more, our refinement-based theory is a generalization of his
Z-based framework. Our theory can be applied to quite dif-
ferent specification models, e.g. to CSP, Label Transition
Systems etc., provided a notion of refinement (or a similar
implementation relation) is available.

Woodward investigated mutation operators for algebraic
specifications [24].

More recently, Simon Burton presented a similar tech-
nique as part of his test case generator for Z specifications
[9]. He uses a combination of a theorem prover and a col-
lection of constraint solvers. The theorem prover generates
the DNF, simplifies the formulas (and helps formulate dif-
ferent testing strategies). This is in contrast to our imple-
mentation, where Constraint Handling Rules are doing the
simplification prior to the search — only a constraint sat-
isfaction framework is needed. Here, it is worth pointing
out that it is the use of Constraint Handling Rules that saves
us from having several constraint solvers, like Burton does.
As with Stocks’ work, Burton’s conditions for fault-based
testing are instantiations of our general theory.

An alternative tool to a constraint solver is a model
checker. Black et al. studied mutation operators using the
SMV model checker [6]. Recently, our group applied the
CADP model checker to generate tests for testing web-
servers [3].

A group in York has recently started to use fault-based
techniques for validating their CSP models [18]. Their aim
is not to generate test cases, but to study the equivalent mu-
tants. Similar research is going on in Brazil with an empha-
sis on protocol specifications written in the Estelle language
[10].

Wimmel and Jürjens [23] use mutation testing on speci-
fications to extract those interaction sequences that are most
likely to find security issues. This work is closest to ours,
since they generate test cases for finding faults.

6 Conclusions

In this paper a mutation testing approach for automatic
test case generation from model-based specifications has
been presented. Its general idea is to model faults on the
specification level by altering a given specification. Then,
test cases are generated that will discover such faults. Start-
ing from a general theory that is based on specification re-
finement, we developed an algorithm for finding such test
cases for pre- and postcondition specifications. The general
algorithm has been instantiated in a test case generator for
the OCL specification language. This tool combines parti-
tion analysis and constraint solving.

It is worth pointing out that both, the theory and the al-
gorithm are general and not linked to a certain specification
language. Even the core of the constraint solver is largely
independent of OCL and could be fairly easily adapted to
languages such as RAISE, VDM-SL, Z, B or JML.

The next steps of research involve case studies in order
to gain more experience with our testing approach. We are
in particular interested if it is possible to identify classes of
useful mutation operators. These operators will rather de-
fine patterns of alternation than strict syntactic mappings (as
in program mutation). Many are expected to be domain or
application specific. Furthermore, it will be interesting to
explore the links to safety analysis, since it might provide
a systematic way for identifying relevant mutations. Obvi-
ously, security is another application area.

The future will show if the fault-based testing strategy
will play a major role in testing. We believe so, because it
supports the tester in concentrating on possible issues in a
more direct way than the traditional structural testing meth-
ods do.
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