@ Centrum voor Wiskunde en Informm

REPORTRAPPORT

Constraint-based facial animation
Zs. Ruttkay
Information Systems (INS)

INS-R9907 May 31, 1999

Report INS-R9907
ISSN 1386-3681

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Constraint-Based Facial Animation

Zséfia Ruttkay
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Constraints have been traditionally used for computer animation applications to define side conditions for gen-
erating synthesized motion according to a standard, usually physically realistic, set of motion equations. The
case of facial animation is very different, as no set of motion equations for facial expressions is available. In this
paper we discuss a facial animation editor, which uses numerical constraints for two roles: to declare the mimic
repertoire of synthetic faces and other requirements a facial animation has to meet, and to aid the animator
in the process of composing a specific animation fulfilling the requirements. The editor is thus also a ‘motion
sculpturing’ tool, which lifts the task of creating facial animation from the control data manipulation level to
the conceptual design level. The major aid of the editor is to repair inconsistencies due to changes made by the
user, and revise changes for which no good repair is possible. Also, reuse of constrained animations, especially
expressions, is supported. The main machinery behind these services is interval propagation, which, if using
certain type of linear inequalities to express the character- as well as the animation-specific requirements, can
produce quickly the interval of feasible values for each control variable. If a solution (usually, repair) has to
be produced, it is generated by selecting the best one from a restricted set of acceptable solutions, based on
user-defined or automatically generated criteria for the choices.

1991 Computing Reviews Classification System: D.2.2, G.1.3, H.5.1, H.5.2, 1.3.6, 1.3.8, J.5

Keywords and Phrases: constraint propagation, interval arithmetic, incremental solution update, undercon-
strained problem, numerical constraints, continuous constraints, animation

Note: This paper has been accepted for publication in the Constraints journal. The work has been carried out
under the project INS3.4 ‘Facial Animation’. An on-line version of this report with some figures in color is
available from ftp://ftp.cwi.nl/pub/CWIreports/INS/INS-R9907.ps.Z.

1. INTRODUCTION

In this paper we show the potentials of an interactive graphical animation editor to produce animations
according to requirements of different origin and with different scope, all expressed in the form of
constraints. Animation building blocks can be also defined in terms of constraints. The design of such
an editor has been motivated by the objectives of the ‘Facial Analysis and Synthesis of Expressions’
project (FASE 1998) to produce realistic 3D (Parke et al. 1996) and cartoon-like 2D facial animations
(Brennan 1985), therefore we will use facial animation as the working example. The issues of facial
animation differ in many respects from those of animating the body or controlling and generating
motion for kinematic systems. However, the ideas behind the facial animation editor are general and
can be applied to other animation tasks as well, where change of form/position in 2D or 3D has to be
controlled directly, via parameters.

In the rest of the introduction we discuss the specific issues of facial animation and explain motion
sculpturing as the basic idea behind our facial animation editor. We also compare our approach
to other paradigms of animation editing, to graphical user interfaces and to musical composition
applications. In Section 2 we introduce how animations are represented, and how expressions and
building blocks are defined in terms of constraints. We discuss how other requirements, with different
source and scope can be expressed by sets of constraints. In Section 3 the issues of constraint processing
are dealt with. First of all, we pinpoint the expectations originating from the role of constraints in

1. Introduction 2

animation editing tasks. Then we introduce the interval constraint propagation mechanism and show
how it is used as a basic engine to reduce the domains, to generate instances of building blocks and
to repair non-solutions. Finally the current system and features under implementation are described.
The paper is concluded by outlining issues of further development and by summing up novel features
of our system.

1.1 Facial animation

Computer facial animation has been a flourishing research topic for more than 25 years, aiming at
building models of human faces which can be animated and used to (re-)produce facial expressions
reflecting emotions and mouth movements for spoken text. The bulk of the efforts has been spent on
producing models which can be deformed to shapes characteristic of human facial expressions. The
majority of the research is concentrated on (re-)producing realistic human faces, urged by the needs
of such applications as televideo, teleconferencing, facial surgery and naturally those of the film and
entertainment industry such as lip synchronization and synthesized actors. Next to these, there is
another set of applications where non-realistic human-like faces have to be animated, not faithfully
but in an expressive and appealing way. Applications of this type include animation films and the so-
called ‘social user interfaces’: human-like creatures guiding the user in using a software or in walking
through a virtual reality environment, or reflecting the state of a system via facial expressions. For
the first type of applications sophisticated 3D models are required, while for many of the second type
applications simple, often 2D models are also sufficient. The mechanisms used to deform the 3D and
2D models may be very different, but the issues of how to define a proper animation are similar and
not yet properly solved for either of the cases. To make our point clear and provide background for
the animation editor, we shortly outline two representatives of the 3D and 2D models. These are also
the ones we have implemented and have animated with the help of the editor to be discussed.

The so-called physically-based models (Terzopoulos et al. 1993) use a multi-layered elastic mesh
with simulated muscles. The deformation of the face is given in terms of contraction of the individual
muscles. Depending on elasticity and width/length parameters of the muscles, forces arise directly
due to the muscle contraction on some of the nodes, and these forces are propagated along the elastic
mesh. According to the laws of dynamics, the nodes of the mesh move to a new equilibrium position.
With additional constraints, for instance that nodes corresponding to points in the layers of the facial
tissue cannot penetrate the underlying skull and organs, or that the total volume of the facial tissue
is preserved, the mechanism of the muscle-driven deformation of a synthetic face comes close to the
physical reality. Such ‘minor’ problems as the proper parameterization of the individual muscles, the
elasticity characteristics of the tissue layers, conformation of a ‘generic face’ to an individual one (not
forgetting about such aspects as varying tissue width) are still to be solved to be able to come up
with a faithfully synthesized model of a given human face. In Figure 1. our 3D Persona model is
illustrated, for technical description see (Persona 1998). Note that physically-based models can be
built for non-human and even non-realistic heads, such as animals or a tea-pot. A common approach
is to control the deformation of these faces by specifying the contraction of the muscles built in the
model.

In case of 2D cartoon-like models (Litwinowicz 1991, Van Reeth 1996, Thérisson 1996) features
of the face can change shape and/or position. We have developed the CharToon Face Editor to
define faces with deformable features. Features can be moved and deformed directly or indirectly, via a
hidden skeleton-like inner structure, by specifying the value of several controller points, each of which
can move in the plain within a predefined rectangle. The deformation of such a face is defined by the
position of all the controller points. In Figure 2. an example is shown, more details on CharToon can
be found at (CharToon 1996).

1.2 Sculpturing facial animations
Parallel to the emergence of improved realistic models, one has been confronted with the fact that
there is neither enough knowledge on the dynamism of human facial expressions, nor appropriate

1. Introduction 3

a) b)

Figure 1: a) A physically-based Persona face: the nodes and connecting springs of the 3 layers and
the muscles. b) The rendered surface.

1. Introduction 4

Figure 2: A 2D CharToon face with the controllers used for deformations of features. One or two-
dimensional cross-hairs indicate range of the location of components or of points defining the shape
of a component. Some examples: Tears can move vertically, pupils can move within a rectangle. The
shape of the mouth is defined by a skeleton with two-dimensional controllers at the lip corners and
by one-dimensional ones at the middle of the upper and of the lower lip.

1. Introduction 5

paradigms and tools to animate synthetic faces.

Make a smile!

To illustrate the problem, let’s assume that there is a perfect physically-based facial model at our
disposal with a sufficient number (like 10-15 pairs) of facial muscles corresponding to the subset of
the real muscles most involved in facial expressions. Our task is to make this face smile. In order to
simplify our discussion, we restrict the task to defining the contraction of the most important muscle
pair involved, the Zygomatic major muscles, pulling up diagonally the corners of the mouth. We want
to produce not only a ‘human smile’, but the smile typical of the person — real or invented — in
question. We will use a further simplifying hypothesis, namely that the muscle activation happens
in three, linear stages: application, release and relaxation as given in [htbp] 3. (It has been shown
experimentally that the actual shape is far more complex (Essa 1994), but because of the lack of
sufficient evidence on the real shape, trapezoid-shaped functions have been widely used.)

muscle
contraction
‘ application l release l relaxation
| R R
| I
| I
| I
P time
Py R

Figure 3: Stages of contraction of a muscle (based on simplifying assumption).

One can define infinitely many pairs of trapezoid-shaped muscle contraction functions. But which
ones produce an acceptable smile? How short or long should a smile last? How are the duration
of application, release and relaxation related? (It has been observed that in case of real smiles of
different length, the three time intervals do not scale uniformly.) What are the absolute and relative
limits on the contraction at the start and end of the release? What is a typical generic smile like?
In what ways and to what extent can a smile be specific? What expressions may and may not occur
while smiling? What is the total effect of co-existing expressions (e.g. smile and speech)?

Motivations for animation sculpturing

One may conclude that the questions above are to be answered by analyzing a huge sample of
real smiles, and that with the development of face motion capturing hardware and software a faithful
animation could be and should be done on a performer-driven basis (Essa et al. 1996, Williams 1990).

There is research going on to accomplish the first task (Ekman et al. 1978, Essa 1994, Guenter
et al. 1998). However, the problem seems to be very hard to tackle: it is difficult to get enough
real, spontaneous facial expression samples recorded under circumstances needed for analysis, and the
computation of the contraction value of the individual muscles based on observed facial deformations
is not well established. Hence, an environment to allow guided experiments with invented synthesized
expressions may help the process of learning about the laws of real expressions.

On the other hand, the declarative definition of the facial repertoire of a character would be very
helpful when inventing animations for realistic or cartoon-like faces. One would like to be able to de-
clare such characteristics of the facial repertoire as permanent or conditional (e.g. in case of excitement)
asymmetries in the motion of pairs of features, or the typical way of smiling. These characteristics

1. Introduction 6

would be automatically enforced, and predefined building blocks could be reused in course of editing
an animation for the face. Also, when editing a particular animation, the user would have tools to
add and modify requirements. Thus such a tool would make the presently very labor-intensive and
low-level process of creating animations easier and faster, and lift it to a higher conceptual level. The
reuse of pieces of animation could be also supported, by adjusting an animation to meet a modified
set of requirements. Thus the facial animation editing tool we envision has two intended usages:

e to sculpture the dynamism and mimic repertoire of a face to be animated;

e to make animations for a face with a given mimic repertoire, meeting certain further require-
ments set for the particular animation.

Characteristics of the animation application domain

The questions the animator has to answer when producing expressions are essential and difficult
whatever facial model one has to animate, and the related issues are basically independent of the
model in question. One can define several different mimic repertoires for the same facial model, as
the facial model itself does allow a huge variety of deformations and any sequence of them.

This is a big difference compared to other domains of animations, where generic physical laws of
motion and given physical properties of the model — e.g. size, weight, maximum angle of joints —
are used to compute motion characteristics of the body, based on some given control values, such as
motion parameters of some parts of the model. In case of facial models the motion of feature-points
of the face are basically independent. For cartoon-like faces, this is an advantage: the animator would
like to experiment with unrealistic facial expressions (like eyebrows jumping off the head, eyes growing
big). In case of realistic facial models, this is partly a deficiency of the model, due to the fact that
little is known about the anatomy-based co-articulation and physiology of the muscles. As far as we
know, no physically-based facial model has been made to reproduce the phenomenon of muscle co-
articulation based on the physics of the model. Note, however, that much of the muscle co-articulation
is not caused by the anatomical structure of the face.

On the other hand, in case of physically based models there is a different task, which more or less
corresponds to the usual inverse dynamical motion control problem. If one specifies the 3D location
and possibly other motion parameters of certain feature points on the face (corresponding to certain
vertices on the upper layer of the facial polygon), then the motion parameters of the rest of the vertices
of the multi-layered mesh of springs and the contraction of the muscles have to be updated, based
on the dynamical laws of motion. Note that the aim here is to reproduce single deformations, not to
synthesize facial motion.

In the better explored field of body animation, the concepts corresponding to that of facial expres-
sions like ‘a big smile’ or typical mimic characteristics as ‘less articulated right-eyebrow movement’
would correspond to ‘a happy jump’ (may be not high, but with hands above the head, though one
could jump equally high with hanging hands) and to ‘limping walk’ (right steps are always smaller
than left steps, though the body is symmetrical). These are motion characteristics which cannot be
derived from the physics of the body. In general, the functionalities of our facial animation editor
could be used in animation domains where a big number of the control parameters are independent
of each other, both concerning the state at a given snapshot as well as in time. In such domains it
remains for the animator to sculpt the dynamism of the model to be animated. Cartoon-like (Owen
et al. 1994) and emotional body animation are such fields.

1.8 Comparison to other approaches

Parameter keyframing has been a common practice because of two reasons: it provides complete
freedom for the animator, and also, often because of the lack of more powerful tools for many animation
tasks. Our editor can be seen as extension to parameter keyframing. The first difference is that not
all parameters have to be specified for each keyframe. The second and more important extension is
that constraints provide a basis for declarative keyframing and the definition of building blocks.

1. Introduction 7

Most of the commercial animation packages do allow the manipulation of motion curves. Manipu-
lation is usually restricted to one channel at a time (corresponding to location and speed co-ordinates).
In the latest version of Alias Wavefront (Alias 1998), it is possible to define functional constraints
between channels. However, constraints are treated in an ad hoc way and have a role only in gener-
ating animation data. The idea of using constraints to characterize the required motion or to define
building blocks is missing from Wavefront.

The recent FaceWorks software (FaceWorks 1998), particularly designed as an authoring tool for
facial animation, is in many respects limiting. Only expressions can be manipulated, namely in-
serted /deleted /scaled, animations cannot be fine-tuned on parameter level. The intensity and dura-
tion of expressions can be changed. Though the definitions of the provided expressions are hidden, it
looks like that there are no constraints used as in our case. E.g. expressions are scaled linearly, and
thus arbitrary short/long expression actions can be generated. Neither variants of an expression can
be generated, nor new, person-specific expressions can be defined and used as building blocks. The
user has no means to define requirements, in our terminology only animation data can be specified.

Software packages for performer-driven animation address the issue of modifying and reusing
performer data. The recent Famous software (Famous 1998)is similar to our editor in allowing trans-
formations or fine-level editing of selected tracks and time intervals of performer data. The system en-
sures that a set keyframe is ‘smoothly interpolated’ to recorded data preceding/following the keyframe.
However, the main difference is that there are no constraints used, the operations are performed as
Bezier curve operations. Closest to our approach is the body motion capture data system outlined
in (Da Silva et al. 1997), which provides a framework and a good interactive environment to process
and reuse curves obtained by motion capture. Concatenation and blending of motions is based on
mechanism for processing signals. In both systems, building blocks are pieces of animation data, in
our terminology, not constrained animations. All the same, the success of these techniques indicate
the urging need for tools to manipulate and reuse pieces of animations.

Motion warping techniques (Witkin et al. 1995) and signal processing based motion curve trans-
formations (Bruderlin et al. 1995) have similarities to our approach, namely that they transform
motion in a controlled way. The principles behind these techniques are often intuitive and can be
given in qualitative terms rather than in terms of strictly defined characteristics, and always concrete
curves are manipulated. (No motion types can be declared and instantiated.) They do not allow as
fine control as one has with constraints. An exception is the work on constraint-based motion adap-
tation (Gleicher et al. 1996), which uses the combination of motion signal processing methods and
constraint-based direct manipulation, in order to be able to modify an existing motion to meet certain
requirements. The requirements are expressed in terms of certain types of constraints on new values
for some parameter channels at arbitrary time moments, not only at control vertices defining the time
curve, like in our case. The ‘best’ perturbed motion is the one where the total change of parameter
values of control vertices is minimal. Hence, in contrast to our approach, the time of control vertices
cannot be changed. The strength of the system consists in that the locally prescribed constraints
have an effect in some sense on the entire motion on the basis of trying to keep the perturbed motion
similar to the original one. Our approach differs in using explicit constraint propagation to propagate
effects of local modifications, and allowing the user to control dynamically the range of propagation. It
would be interesting to see how similar perturbed motions are, if generated by the two methods. Our
expectation is that if applied for sequences of facial expressions with fixed times and loose expression
definition constraints, the perturbed motions will be close to each other. The concept of building
blocks defined by constraints as well as more sophisticated requirements than one-time constraints
are missing from Gleicher’s and Litwinowicz’s work. They remain on the data level use of one-time
constraints, in accordance with their primary goal of being able to perturb animation data. Their
approach, just like ours, is not restricted to modifying physically correct motions.

There is extensive literature on motion synthesis and motion control systems based on some
general constraints and principles of physical motion. Many systems apply dynamical constraints
(Hodgins et al. 1995, Kokkevis et al. 1996, Witkin et al. 1990), which are universal constraints ex-

2. Constrained animations 8

pressing the Newton laws for the motion and deformation of real objects. In the case of inverse
kinematics general motion and geometry equations and constraints can be used. In both cases, the
‘environment’ can be modified by changing relevant parameters of the model (e.g. mass and geometry
of the person walking, limits on relative extreme positions of moving parts) or by prescribing the value
of some of the motion parameters (location, velocity) at certain times (Cohen 1992). In these cases,
constraints are used to generate a piece of motion, which is a more limited usage than in our case.

Finally, the user interface of our animation editor brings into mind graphical user interfaces (Born-
ing et al. 1995, 1996, 1998), layout systems (Oster et al. 1998, Vander Zanden et al. 1995, Pachet
et al. 1998) and systems supporting musical composition (Pachet 1999), which apply constraints and
often use some specific incremental propagation method to update solutions. What makes our ani-
mation editor basically different from layout systems is that the parameter staves are only a visual
representation of an animation. Also, the animation and requirements are defined in terms of param-
eters possibly without any geometrical meaning. All the same, the particular visual representation is
chosen because it is suitable to show important characteristics of the animation. Hence the editor can
be considered as a graphical user interface with unusual specific features (e.g. role of time line,
possibility to change constraints in several disjunct areas at a time).

It is an interesting question if the somewhat similar notation and the critical role of time in musical
composition systems could provide applicable techniques for animation editing. There are similarities
in using constraints in a declarative way, such as the choice of definitions of locality for perturbations
and the need for criteria for selecting from a huge set of solutions. However, in the musical composition
domain, there exists a canonized knowledge on musical styles, which is supposed to be part of the
knowledge of the composer and/or of the musical composition system. E.g. if a ‘Wiener minuet’ is to
be composed, there are criteria on the meter, the structure and the harmony to be met. Moreover,
a single well-established musical notation can be used to compose all kinds of music. In the case of
facial animation there is much freedom in defining general requirements and building blocks, there are
neither accepted ‘styles’ nor a language to define them. The lack of domain-specific knowledge and
notational conventions make the task of designing an editor for facial animation especially challenging.

2. CONSTRAINED ANIMATIONS

In this section we explain how constraints can be used to define reusable facial expressions as well
as different requirements concerning the animation. In the rest of the paper we will use the earlier
introduced simplified smile as an example. One should remember that usually the animator has to
orchestrate dozens of parameters, and define the value of each parameter for each 40 millisecond
(assuming 25 frames per second frame rate for the animation).

2.1 Types and representation of animation constraints

A deformation of a face is defined in terms of a fixed number N of parameter values. Each parameter
may take its value from a domain of closed interval of reals. One specific value of the domain is
the neutral value, that is the value of the parameter in case of a neutral face. An animation is the
temporal evolution of the deformation along time. An animation is given by the vector of functions
(Fi(t),... Fn(t)), where F; : T — D, gives the value of the i-th parameter for each time moment in
T, where T is the duration of the animation.

The parameter values are given explicitly for some time moments only, and for the rest of the time
the value is computed on the basis of the given defining values, similarly to the idea of traditional
parameter inbetweening. (Inbetweening is the common practice of making animations by defining the
position/shape of a character for some, so-called keyframes only, and the position/shape for frames
between keyframes is derived on the basis of the keyframes before and after the frame in question.
In the simplest case linear interpolation is used, but human animators — and some of the computer
animation software packages too — have a broad repertoire of other principles.) In our discussion,
we will assume that the not explicitly given parameter values are computed by applying piece-wise
linear interpolation on the intervals between the time moments with given parameter values. Our

2. Constrained animations 9

approach is insensitive to what particular interpolation method is used. As there is not yet sufficient
data about the characteristics of facial parameter curves, we have no reason to use some specific type
of interpolation. However, one could use e.g. cubic polynomials to get smooth interpolating curves.
We will use the notion parameter curve for the graph of a parameter function.

As introduced above, for the ¢-th parameter channel, a number of P; = (t;, v;) control points (CPs)
are given which define the parameter curve for the channel. The number of control points may differ
from channel to channel, and control points for different channels need not be aligned along time. We
assume that control points of each channel are indexed according to increasing time, that is t;- < t; 11
If for a channel no control points are given, then the value of the parameter is assumed to be the
neutral value. We will refer to the co-ordinates of a CP as the time and parameter variables, and to
their values as the time and the parameter value of the CP. We will also talk about the CP at a given
time, the CPs within a time interval, and the preceding and following neighbor of a given CP.

Usually the task of making/modifying a facial animation is given in terms of certain requirements.
E.g. how long the animation should be, what expressions should the face show at certain time moments
or intervals, blinks should be slow, etc. To specify an animation requires specifying a sufficient
number of control points, at proper times with proper parameter values, namely so that the resulting
(Fi(t),... Fn(t)) functions together produce an animation with the requested characteristics. We deal
with requirements which can be expressed in terms of certain types of constraints on co-ordinates of
control points. All the allowed types of constraints limit the value of a function of co-ordinates of
certain control points. We will use extended intervals to indicate these limits: I = [I,I] is a finite or
infinite interval, the I and I are reals or oo, and I < I. 7 denotes the set of all extended intervals,
while Z’ denotes the intervals of Z not containing 0 in their inside, and Z* denotes the intervals of Z’
not containing +oo. Defining the < relation for the extended reals, this notation allows inequalities
and equalities to be expressed in the form of membership in extended intervals. E.g. x —y > 20 will
be expressed as x — y € [20, +0o0].

In general, all constraints of the form c¢(x1, ...z;,) € I are allowed for which the ¢ : R — R constraint
function is continuous and monotone in each variable on the domains of the variables. For the rest
of the paper we assume that only so-called basic facial animation constraints are used. The basic
facial animation constraints are all linear. The unary constraints limit the domains for variables,
the binary ones limit the difference of time or parameter variables or the proportion of parameter
variables. The 4-ary constraints limit the proportion of time intervals between two pairs of CPs
of the same channel, or the proportion of value and time difference between two consecutive CPs.
These constraints are expressive enough to formulate a range of animation requirements concerning
synchronization, intensity and duration of expressions, and speed of appearance. The basic facial
animation constraint types are listed in Table 1.

Table 1: The types of basic facial animation constraints.

(Ta) t; el time range (Ib) vé el value range
(ITa) t; —t? €I time duration (ITb) U; —or el value range
(III) ij :i’f el relative time duration, where I € 7’

(IV) Uvﬂl el relative parameter value, where I € 7/

(V) % €I parameter change speed

2. Constrained animations 10

An animation A is given as a sequence of control points for each parameter channel. This data
is sufficient to play the animation. However, if the animation is to be altered, then one needs to
know about the constraints which express the requirements the animation is supposed to meet. An
animation with a set of constraints is called a constrained animation, and is denoted by the tuple
< A, C >. The variables of C are the co-ordinates of the CPs in A. An animation without constraints
will be also called as animation data. We will denote the CPs referred to by C' as ¢p(C'), and the
variables as vars(C). A constrained animation is partial, if not all the variables (co-ordinates of
CPs) have an assigned value, otherwise it is complete. A constrained animation is feasible, if all
the constraints in C, which refer to only instantiated variables, are satisfied. A good animation is a
complete and feasible constrained animation, that is one where A is a solution of C.

2.2 Definition of expressions

It is common practice of animators to reuse some earlier made pieces — such as a smile, a blink and
a mouth-shape — as building blocks. By defining building blocks as constrained animations, it is not
only possible to generate and paste proper animation data, but additionally to manipulate the pasted
data in accordance with the constraints given for the building blocks. We will refer to constrained
animations to be used as building blocks as expressions, and to animation data that are a solution
of the constraints prescribed for the expression as expression actions. (Expressions are used in the
broadest sense, not only for animations with the semantics of real facial expressions.) A particular
solution represents the so-called default expression.

We keep the notion snapshot for certain static configurations, that is expressions with at most
one CP for each parameter channel, and all CPs with the same time value. Similarly to expressions,
snapshots are defined by constraints on (some of the) parameter variables. Hence, the smile expression
defines the dynamic process of smiling, while the smile snapshot defines a frozen smile.

muscle muscle
contraction contraction

10 10

time (msec)
1000 1000

Figure 4: Two smile actions which are solutions for the same set of constraints.

EXAMPLE 1 A smile expression and two smile actions.

In Table2 the definition of a smile expression is given. Only unary constraints and binary constraints
of type II are used. The binary constraints (1a,b), (2a,b)and (3a,b) provide limits for the duration of
the application, release and relaxation stages, (4a,b) and (5a,b) tell how the timing of the activation
of the two muscles should be synchronized. Particularly (4a,b) declare that the activation of the two
muscles should start and end at the same time, while for the other two control points some deviation
is allowed. The constraints (9a,b) limit the difference between the values of the corresponding control
points for the two muscles. Finally, constraint (10) tells how much the values may differ at the
beginning and at the end of the relazation of one of the muscles. The given set of constraints has
many solutions, each corresponding to a particular smile action. In Figure 4 the parameter curves for
two smile actions are shown.

2. Constrained animations 11

Table 2: Constraints of the smile action. For j =1,...4 (t;,vjl.) are the control points defining the

contraction function for the right, (t?, UJQ) for the left Zygomatic major muscle.

(0a) ¢i € [0,30000] (0Ib) wi € 0,10]

(la) ti —t} € [50,300] (1b) 3 — 12 € [50,300]
(2a) t} — 3 € [100,400] (2b) t3 — 3 € [100, 400)
(3a) ti—ti€[100,300] (3b) t2 — 2 € [100, 400]
(4a) t1 =2 €10,0] (4b) th —t2€10,0]
(5a) ty —t3 € [-50, 50] (5b) th — 3 € [-50, 50]
(6a) v} €10,0] (6b) v? € 10,0]

(Ta) v} e0,0] (7Tb) w2 €[0,0]

(8a) v} €[7,10] (8b) v3 € [7,10]

(9a) vi — v} e [-1,1] (9b) v —vd e [-1,1]

(10) vl — v} € [5,8]

2.8 Ezxpressing requirements by constraints

The definition of expressions is only one possibility for the declarative usage of constraints. Below we
look at how other requirements can be expressed in terms of constraints, and how the constraints for
an animation can be generated, based on the scope and origin of the requirements. Without going into
details, posting a requirement on a constrained animation < A, C' > results in a new, maybe partially
constrained animation < A’, ¢’ >. Note that nothing is said about how new CPs are added, and if
the new animation A’ is feasible. Often cp(C’) = ¢p(C) and C’ D C, that is, by adding a requirement
only constraints are added.

EXAMPLE 2 Symmetrical facial motion.
Often one wants to generate symmetrical motion of the face. This requirement has two effects on the
CPs of the corresponding parameter channels of the left- and right features:

o the number of CPs should be the same for the two parameter channels;
e the Ist, 2nd, CPs should have the same time- and value for both channels.

Let us examine the effect of this requirement on a constrained animation < A,C >, particularly on
the 1st and 2nd channels corresponding to feature pairs. Possibly new CPs are added to the ones in
A to make the number of CPs equal for the two channels, and the t} — t? € [0,0] and vjl» — v?. € [0,0]
constraints are added to C, for j =1,2,... M, where M is the number of CPs in the channel 1 (and
also for channel 2).

3. Constraint processing while editing 12

Scope of requirements
Requirements may be posed for different time intervals and/or channels. This aspect is expressed
by the scope of the corresponding constraint, which can be one of following:

e General: The constraint should hold throughout the entire animation and for all parameter
channels.

e A single parameter channel: The constraint should hold for the entire duration of the
animation for one parameter channel.

e One expression: The constraints should hold for control points of all expression actions of a
certain kind.

e Certain parameter channels: Two or more parameter channels are coupled, in a given time
range or for the entire duration of the animation.

e Local: One-time specific constraint for a selected set of control points.

Source of requirements
When working on an animation, the requirements and resulting constraints to be taken into account
are from different sources:

e The ‘physical limitations’ of the face to be animated, such as muscle contraction (speed
and value) limits. Note that the ‘physical limitations’ may reflect the (assumed) anatomical
characteristics of the face, but could be of other nature, such as limitations of the rendering to
be used.

e The behavioral repertoire of the character to be animated, such as articulated eyebrow
movement, as typical for the character.

e The storyboard of the animation, such as requirement for lip-synch according to written text
or recorded speech to be spoken by the character.

e The animator who may add further, global or local constraints e.g. for synchronization, or for
refining an expression action.

On the basis of the scope and source of the requirements it is possible to pose/withdraw several
requirements together, and thus add/remove sets of constraints. E.g. as soon as a particular face is
to be animated, the requirements associated with the ‘physical limitations’ of the face are posed. If
audio of spoken text is also given, then the requirements on mouth shapes at certain time moments
are posed. The two sets of requirements can be independently withdrawn and posed. We do not
discuss the technical details of requirement posting in this paper.

3. CONSTRAINT PROCESSING WHILE EDITING

Editing an animation takes place by a sequence of two kinds of editing operations, which can be
performed by directly manipulating a graphical representation of the control points of the parameter
functions:

e adding/deleting (groups of) CPs;
e changing parameter and/or time value of (groups of) CPs.

Interwoven with the manipulation of control points, the animator also changes the set of constraints
in two ways:

3. Constraint processing while editing 13

e implicitly, as the addition/deletion of a CP usually implies the addition/retraction of con-
straints (and eventually also, the addition/deletion of further CPs), due to the scope and source
of requirements (see Figure 5.);

e explicitly, constraints may be added/deleted/modified in a direct way, by changing require-
ments of all possible sources.

muscle muscle
contraction contraction

Figure 5: The arcs indicate binary constraints, expressing temporal ordering between neighboring
CPs. In a), there is a binary constraint between CPs P and Q. In b) a third CP, R has been inserted
between P and Q. The insertion of R implied removal of the initial binary constraint between P and
Q and the addition of two new ones.

A constrained animation should be good, that is it should be a solution of the current set of constraints.
When the user manipulates the current good animation, goodness may not hold any more. As a
response to the user’s manipulation of the animation A or the set of requirements R (and thus, set
of constraints C'), the animation is perturbed to one which is good, that is a solution of the updated
set of constraints. Perturbation is understood as generating a solution that is acceptably close to the
original animation. If there are no acceptable solutions, the latest good state is restored. Otherwise,
a best acceptable solution — closest to the original animation — is selected. The scenarios are given
below:

procedure Change_Animation(A, C, R, A¥)
A’— Add_Delete_CPs(A*, R)
C'— Add_Delete_Constraints(A’, C, R*)
if Acceptable_Solutions(A’, C', A) = ()
then return(A, C, R)
else return (Best_Solution(A’, C', A), C', R)

No o wbhH

end

procedure Change_Requirement(A, C, R, R¥)
A’— Add_Delete_CPs(A, R¥)
C'— Add_Delete_Constraints(A’, C, R*)
if Acceptable_Solutions(A’, C', A) =0
then return(A, C, R)
else return(Best_Solution(A’, C', A), C', R¥)

No gk wbhH=

end

3. Constraint processing while editing 14

3.1 Constraint handling expectations
The challenge is to provide an animation editor which works according to the above outlined scenarios.
The constraint handling mechanism of the editor has to meet the following expectations:

Fast response: the solution method should be fast enough to provide real-time repair of the
current animation as a response for user input.

Feedback on feasible regions: the feasible region should be made visible for the user to guide
him while manipulating the animation.

Dynamic restrictions of the solution space: different criteria to restrict the search should
be dynamically generated and taken into account.

Preferences for solutions: if many solutions exist, the best one should be selected, with
respect to automatically generated or user-defined preferences.

Incremental update: as a response to frequent but small modifications of the current good an-
imation data and of the constraints by the user, the animation data has to be repaired/extended,
by reusing much of the latest good animation.

Help in case of conflicts: some mechanisms should be available to point out conflicts and to
guide the user in resolving them.

The CSPs used to define animations exhibit many characteristics as listed below, which restrict the
choice of applicable solution methods. All but the last two are common in interactive graphical systems
(Borning et al. 1998).

Non-functional constraints: if all but one variables of a constraint are instantiated, there
can be more than a single possible value chosen for the remaining variable in such a way that
the constraint is satisfied.

Multi-way constraints: there is no general input-output role assigned to the variables of
a constraint. A cast of role can be assigned dynamically, depending on the semantics of the
variables and the specific interaction of the user.

Cycles may occur: there may be cycles in the constraint graph. However, cycles are usually
short and the constraint graph is not dense.

Numerical infinite domains: the domains are infinite, specifically intervals of reals or integers.

Variables change dynamically: the set of variables is not known in advance, but changes
due to editing.

Ordering by time: the time of CPs provides a basis for defining distances of CPs, which
can be used to focus on sub-parts of the entire problem and to define ordering for variable
instantiations.

Finally, the type of constraints and the requirements to be used for different animations cannot be
given in advance, which poses further demands:

Robustness with respect to constraint types: the above listed characteristics of the con-
straint handling should be valid for a wide range of constraint types, not only for the basic
ones.

Tools to edit requirements and constraints: Constraints and requirements should be
defined and manipulated on different levels, e.g. switching on a requirement for a selected time
interval, defining an individual constraint on some of the CPs. Particularly, visualization of
constraints and mechanism to name variables are difficult Ul issues.

3. Constraint processing while editing 15

3.2 Reduction of interval domains

Interval propagation is a powerful and general paradigm for reducing numerical interval domains
(Benhamou et al. 1997, Lhomme 1993), and can be well adapted to fulfil most of the requirements we
listed. In a nutshell, interval propagation algorithms iteratively compute tighter and tighter bounding
boxes — direct product of intervals — around each solution, based on the idea of splitting a selected
domain and tightening the domains of the rest of the variables for each split half. The idea of
propagating values of the bounds is close to partial lookahead for finite domains as defined by (Van
Hentenryck 1989). There exist current efficient systems that use the idea of interval propagation
for computing solutions (Benhamou et al. 1994, Van Hentenryck 1997, Van Hentenryck et al. 1998).
However, the following points have to be taken into account before opting for such an algorithm:

e No solution is generated: After each step, approximating boxes around the solutions are
provided. In general, the user knows nothing about the number and distribution of all the
solutions within the bounding box. Hence the task of generating a single exact solution is
beyond the capability of these algorithms. Moreover, if there are many solutions far from each
other, then the big number of small-size bounding boxes may cause a combinatorial explosion.

e Propagation of intervals may be costly: intervals are tightened step by step, on the basis
of estimating the value of a constraint on boxes. In case of complex, non-linear constraints this
may require some expensive computation, making the algorithm slow.

In facial animation editing the above shortcomings of interval propagation can be avoided by such
compromises which do not limit the expected functionalities. Namely, our approach is based on two
assumptions:

e The projection of any constraint on each variable, restricted to the intersection of any box and
of the solution set, is a closed interval.

e The projection of each constraint on each variable, restricted to the intersection of any box and
of the solution set, can be computed fast.

If all the constraint functions are continuous and monotone in each variable, both criteria are met.
We believe that such types of constraints are sufficient to express all kinds of requirements arising in
facial animation.

From the point of view of direct manipulation the assumption of intervals without holes as the
projections of the solution set is reasonable. Intervals can be easily shown to the user to guide him
to remain within the feasible region when dragging a CP, while it would be hard to make a ‘jumping
over holes’ service transparent.

Interval propagation can be done for uninstantiated variables of partial solutions, by propagating
the known value of the instantiated variables. The decision of how to instantiate free variables —
in which order, and to what particular value within the allowed interval — is left for the user, or
for some automatic (but tunable) mechanism to guide the search. This is actually very much suited
for interactive editing, where the user initiates changes of variable values. There are usually many
solutions, so to be able to define flexible strategies to find preferred solutions is an advantage, not a
burden.

Domain reduction can be also performed on the domain of possible values for the constraint func-
tions. Namely, finding the solutions of a p-ary constraint of the type I < ¢(z1,...x,) < I is equivalent
to finding the roots of the function fe(x1,...2p,y) = c¢(z1,...2p) —y, where the allowed domain for y
is [I,I]. The reduction of the domains of y, that is of the value of the constraint functions, provides
valuable information for coping with changes of constraints, to be discussed in 3.5.

Interval propagation reduces the domains on the basis of interval reduction functions associated
with constraints, and propagates the changes. The process is repeated until a fix point is reached:
none of the reduction functions can decrease any of the domains further.

3. Constraint processing while editing 16

Definition 1 For a p-ary constraint ¢ an interval reduction function, r. is of p + 1 variables, which
maps closed interval p+1 tuples to closed interval p+1 tuples. When given the intervals I, ... LIy
the reduction function returns the reduced intervals I, ... I, I, .y such that: Iy, 2 I} fork =1,...p+1,
and all the roots of f. are within I} X ---x I} ;.

Note that there can be several reduction functions associated with a constraint, which differ in their
strength, that is, how much of the non-solution is chopped off from the ends of intervals. In our case
we use the inverse reduction functions, which provide the projection of the solution set within the
given box on each variable, as defined below:

Definition 2 The inverse reduction function associated with a p-ary constraint is an interval reduc-
tion function such that for the given intervals I, . .. I, I, 41 it returns the reduced intervals I7, . . . Izl)’ Izl)+1
such that I, = f7V (I, .. I, Iy, Iy y) fork=1,...p+1.

Figure 6: a) The solution set is the intersection of the box gained as the product of the domains
and the region of all tuples satisfying the constraint. b) The bounding box around the solution set is
drawn. Its projections onto the x- and y-axes are the reduced domains for x and y.

EXAMPLE 3 Let us consider the binary constraint I < % <1, where 0 < I < 400, and the domain
of the variables are [z,T] and [y,7|, where 0 < x < T < 400, and 0 < y < G < +o0o. The allowed
tuples are the ones within the box gained as the product of the domains, while the tuples fulfilling the
constraint are the ones within the intersection of two half-planes, the solutions are the tuples in the
intersection of the two regions. The reduced domains are defined by the bounding box of the solution
set, see Figure 6. The reduced intervals for the variables can be explicitly given, by analysing the
position of the corners of the box formed by the product of the initial domains, and the vertices of the
trapezoid closed by the lines £ = I, % =T,x = z,x =, as given in Figure 7. If any of the lines £ = I
and ¥ = I does not intersect the rectangle defined by the product of the reduced variable domains, then
the domain for the constraint can be reduced too.

For the rest of the basic animation constraint types the inverse reduction functions are similarly easy
to compute. The invers reduction function produces tight endpoints for the reduced intervals, similar
to the idea of box-consistency (Lhomme 1993).

We use the generic framework of chaotic iteration to describe our algorithm. This framework
makes it easy to define variants, both because of the abstract level of specification and of the known
theorems on convergence and completeness (Apt 1998). Below we give the iterative process to reduce
the domains of an interval CSP.

3. Constraint processing while editing 17

Figure 7: The possibilities for reducing the initial domains by the inverse reduction function for the
constraint I < % < T, where 0 < I < 4o00. The initial domians are white, the reduced ones are
black rectangles. In the top row the reduced domains are identical to the initial domains, while in the
bottom row all but one of the reduced domains are empty.

3. Constraint processing while editing 18

1. procedure Reduce_Domains(D, C*, C)

2. current_domains < D

3. constraints_to_be_considered «— C*

4. while constraints_to_be_considered # ()

5. ¢ « Pick_One(constraint_to_be_considered)

6. reduced_domains < Reduce (c, current_domains)

7. for all x in vars(c)

8. if reduced_domains(x) # current_domains(x)

9. for all ¢’ in C (c'# c and ¢’ not in constraints_to_be_considered)
10. if x in vars(c') then add ¢’ to constraints_to_be_considered
11. endif
12. endfor
13. current_domains «+— reduced_domains
14. endif
15. endfor
16. endwhile
17. return current_domains
18. end

In our application we use finite discretized intervals of [p,p + ¢,p + 2¢,p + ng| where p and ¢
are rationals and n is integer. This ensures the termination of the iteration, and also that we need
not worry about the usual problem related to precision of interval endpoints due to representational
inaccuracy.

3.8 Generating a solution
The above procedure can be used interwoven with variable instantiations, to generate a solution by
specifying a value and propagating its effect on the rest of the domains.

1. procedure Find_Solution(D, C)

2. solution < ()

3. current_domains < Reduce_Domains(D, C, C)

4. if all domains in current_domains are non-empty

5. constraints_to_be_considered «+ ()

6 variables_to_be_instantiated « vars(C)

7 while variables_to_be_instantiated # ()

8. instantiate all variables with a single domain and remove them from
9. variables_to_be_instantiated

10. x < Pick_One(variable_to_be_considered)

11. v «— Pick_One(current_domains(x))

12. current_domains(x)=[v, v]

13. solution = solution U jx,vi

14. for all constraints ¢ (c not in constraints_to_be_considered)
15. if x in vars(c) then add c to constraints_to_be_considered
16. endif

17. endfor

18. current_domains <+ Reduce_Domains(current_domains,
19. constraints_to_be_considered, C)

20. endwhile

21. endif

22. return solution
23. end

3. Constraint processing while editing 19

Note that it is known after the termination of Reduce_Domains(D, C, C) if the problem has a solution
or not. If there is a solution, then by propagating instantiated values, the current domains can be
reduced further and no dead-end may occur. In the procedures Reduce_Domains and Find_Solution
specific selection criteria can be applied instead of the general Pick_One selection. The above procedure
can also be used to check if a partial instantiation can be extended to a solution, and if so, to generate
an extension.

3.4 Generating default and random expression actions

An expression is defined as a (solvable) CSP. Whenever an expression action has to be produced,
a partial instantiation of the variables of the expression has to be extended to a solution of the
corresponding CSP. Typically, only the start-time of the expression action is specified. In this case, the
partial instantiation with one time variable instantiated can be extended in many ways to a complete
solution. For each expression, a method to generate a default solution — the default expression
action — is defined. The default expression generation method extends the given variables to a
default solution, using the Find_Selution procedure with deterministic built-in choices for instantiating
remaining variables. However, often one just would like to have a variety of expression actions for
the same expression. In such a case a random solution can be generated, on the basis of the above
Find_Solution procedure, where choices for variable and value selection are made randomly.

3.5 Maintaining feasibility of the animation

When the user edits the animation, he changes the value of one or more variables of the animation,
adds/removes CPs or modifies the set of requirements. As a result, the animation is not necessarily
good any more, and the editor has to perturb the latest animation data to a new one which is a
solution of the current constraints. The mechanisms taking care of the repair should be based on clear
principles:

e to limit the acceptable amount of the repair,
e to choose the best one from all possible acceptable repairs.

Given a complete instantiation, the acceptable solutions are those solutions that can be gained by
changing only a subset of the variables of the given instantiation. The non-changeable variables, the
so-called blocking variables are identified dynamically, depending on the current animation, the change
initiated by the user and some criteria on limiting the effects of the user’s action. Typically, when
changing an animation, one would prefer local effects. Hence variables of CPs far away (in time) from
the CP being changed will be blocking variables. Also, the animator may prefer to work ‘from left
to right’ in time. In such a case all CPs to the left from the currently changed CP should remain
unchanged. If the timing of the animation should not be changed, then all time variables will be
blocking ones. There are several further alternatives for defining the set of blocking variables. One set
may contain others, but the ordering induced by inclusion is, in general, only partial. The user has the
freedom to choose from the predefined alternatives, and switch from one to another to dynamically
control the range of acceptable modifications.

In compliance with the propagation framework and the required fast response, the comparison of
the possible repairs is based on an ordering of the variables and the difference between the old and new
value. In the Find_Solution procedure, when a best solution is to be provided, instead of the Pick_One
procedures for variable and value selection, some Pick_Most_Important_Variable and Pick_Best_Value
procedures are used.

Repair in response to changes in variable values

The variables of CPs manipulated directly by the user are the set variables. The variables whith
a value determined by the constraints, that is their domain contains a single value after domain
reduction has been performed, are the frozen wvariables. In each situation the free variables are the

3. Constraint processing while editing 20

non-frozen, non-set and non-blocking ones. A repair is possible if after having propagated the value
of the set and blocking variables, none of the variables have an empty domain.

As soon as a CP is grabbed, then a few CPs are identified as time or value blocking CPs. The
value of the blocking variables is propagated, possibly resulting in a reduced interval for the time and
value of the grabbed CP. The grabbed CP can be moved only within this reduced interval. When the
grabbed CP is released, the effect of the change is propagated to the other variables.

Editing operations that involve a selection, that is CPs within a time interval, are considered as
dragging all the involved CPs to their new location simultaneously, and the above-described approach
is adapted.

Repair in response to manipulating the requirements
Changes of requirements can take place on three levels, by:

I. tightening/adding an individual one-time constraint;

II. changing constraints of one or more channels, with or without keeping constraints due to ex-
pressions;

III. modifying definition of expressions.

In case of level (I) changes, the blocking variables are all the ones outside the time region of the newly
constrained CPs. Checking of feasibility of the added constraint and repair is done in a similar way
as for editing multiple CPs.

In case of level (II) changes all the constraints which may be changed involve parameter variables.
Repair is made by trying to preserve the timing of the animation to be repaired. There are several,
partially ordered criteria to choose from to define the set of blocking variables.

The changes for a parameter may be in conflict with the definition of expressions. The option of dis-
carding of expression definitions removes the constraints originating from the definition of expressions.
The issue of removal of constraints is addressed in the next section.

With changes of requirements on level (III), the intention is either to replace certain expressions with
others from the existing expression, or to redefine a facial expression and update the existing expres-
sions accordingly. The change of expression may require the loosening/removing of certain constraints
and tightening/adding others. The effect of loosening/removal of constraints is computed by re-doing
the constraint propagation for the entire effected subproblem. The effected subproblem contains all
the constraints which are connected to at least one loosened constraint. The added/tightened con-
straints are then propagated, taking into account blocking variables. For generating the best repair,
different orders of CPs within the expression can be given which defines the order of instantiating the
free variables within the expressions. The individual expression actions are taken from left to right.

Repair in response to adding and removing CPs

When the user initiates the insertion of a single CP, it is checked if there are requirements that
prescribe the addition of constraints referring to the CP being inserted, and if those constraints are
satisfied (see Figure 8.). If so, insertion takes place, and the effect of the removed/inserted constraints
is propagated. Single CPs cannot be added to/removed from expressions.

If multiple CPs are to be inserted, similar checks take place for all the CPs. A piece of constrained
animation can also be inserted. Then the constraints defining the inserted piece are also added.

3.6 Implementation

A first version of the parameter curve editor has been implemented in Java. This editor produces the
‘scores’ of the animation (see Figure 9.). A number of parallel lines — a ‘staff’ — are presented for
each channel, and the control points (corresponding to musical notes) are to be placed in the staves.
The effect of changes to scores can be seen directly, as the corresponding deformation of the face to

3. Constraint processing while editing 21

muscle
contraction

Figure 8: Two requirements limit the region for inserting a new CP: neighboring CPs should be no
closer than 2 seconds, and the speed of the parameter value should be between -1 and 1. The region
(given in light gray) where a CP can be inserted between the CPs P and Q. After inserting R, the
feasible region for inserting a further CP has shrunk to two smaller regions (given in dark gray). Note
that between P and R it is possible to insert a new CP only at time 400.

be animated is shown. Parts of the scores can be selected, and the resulting animation can be played
to evaluate the visual effect.

The editor allows the insertion/deletion/dragging of single or multiple selected CPs. A selection can
be copied and pasted, and scaled along time and parameter values. The user can select and manipulate
pieces of more than one parameter curve at the same time, and perform the previous operations on
all of them. Hence, it is possible to scale linearly an entire action, insert a smile and make repetitive
blinks. Moreover, copy and paste is supported between multiple channels of different animations using
different parameter profiles, as long as the number of channels is the same in the source and in the
target. Appropriate bi-linear scaling takes place, making sure that neutral, minimum and maximum
values correspond to each other in the channels copied from and to. Animations can be saved and
read in as Java objects or ascii scripts, hence a library of pieces of animations to be reused as building
blocks can be built up. This makes it possible to share pieces of animations between different facial
models to be animated, and also to drive a synthetic face by — possibly edited — parameter curves
gained by capturing the facial motion of a real human performer.

Only two most straightforward and general constraints are implemented, namely that the time of
the control points should be increasing, and that parameter values should be within the domain given
for the parameter. The manipulation of control points either individually or by performing operations
on groups of them is revised automatically in order not to violate these constraints. There is no
possibility yet to define building blocks in terms of constraints, but the editing and reuse of pieces of
animation is supported.

Currently the new, fully constrained-based version is being implemented, with the above-discussed
functionalities, also in the object-oriented style of the Java language. The new version will be extended
with menu-based editing facilities to manipulate requirements and to choose for preferences for repair.
The final choice for identifying blocking variables and alternatives for repair strategies will be limited,
on the basis of how appropriate the effect of the different possibilities is in typical animation sessions.
Also, the time of response to user’s action purely based on interval propagation will be critically tested.
For the final version it may be necessary to use generic or application-dependent heuristics for the
order of applying reduction functions. The constraint-based definition of some basic expressions will
be provided, allowing the generation of default and random expression actions and expression actions
with different intensity. Besides the parameter channel level of visualization and editing, a level

3. Constraint processing while editing 22

Frame Animation Sound MNovie View AV Focus AV Edit Opiions Aelp

HarpHanVert A
556

nleft_out_Tear v |[Bl[@]S]E]a]

il

24

20000 hrow |.@ =——

-6

32

24:1_a_brow_y HeE - =

z

-14

25hr lidy [zeEEE]

Figure 9: The Animation Editor, showing staves with data gained from captured facial motion and
staves with synthetic, edited data. The second and third staves contain performer data to control the
shape of the eyebrow. Data for crying and blinking were added by the animator. The top staff contains
the parameter curve for dropping a tear, while the bottom one the curve for closing an eyelid. The
shown cartoon face corresponds to the snapshot of the parameters at time 4300 msec. The highlighted
portion of the animation, namely the eyebrow curves between 4200 and 6000 msec are selected. This
selection can be edited: cut and copied, shifted in four directions, scaled, etc.

4. Discussion 23

for expressions will be provided with a separate staff. Also searching for occurrences of expressions
as well as replacement definition will be supported. Some visual feedback will be given on (effect
of) constraints, showing frozen, blocking and free CPs in different colors. By clicking on CPs, the
constraints referring to the CP will be listed.

4. DISCUSSION

4.1 Further issues

As mentioned earlier, the solution method is not incremental with respect to removal of constraints.
We hope that the time for recomputing the ranges of the effected variables will not be prohibitive,
because of the sparse and loosely connected — though big — constraint graph. An other approach
could be to keep track of the tightening of lower-upper bounds for variables similarly as done for
interval arc-consistency algorithms (Cervone et al. 1994) and use this information to identify which
ranges must be recomputed. For recomputation, some kind of ‘resetting’ propagation (Georget et al.
1999) could be used.

There has been little said about allowing the user to see and directly manipulate constraints
set for an animation, and helping him to understand their effect. As long as the number of type of
constraints is small, and constraints refer to variables of at most two CPs, the different constraints
could be visualized as annotated curves connecting CPs, and the visual representation could be edited
by direct manipulation. Allowing to visualize constraints within a time interval, and/or of certain
source and scope would make such a visualization really helpful.

A facility for the interactive definition of building blocks — in contrast to writing the piece
of code for the object and its methods — would be a good further extension.

Blending and concatenation of actions raises different types of questions. How to present and
manipulate a piece of curve which is some kind of sum (Witkin et al. 1995) of two ordinary ones?
Editing of blended actions should happen by editing one component at a time. Another type of
question is if such a protocol is appropriate for the purposes of the animator — thinking in terms of
components rather than the total effect. Moreover, setting requirements on the total effect is beyond of
our framework, as would require some mechanism to reason about (sum of) curves in regions between
CPs.

It has been often stated that computer animations look synthetic, because of the repetition of
exactly the same, canned motion (Perlin 1995). The generation of random solutions and expression
actions is our remedy. Another and more commonly used possibility is to add some noise to parameter
curves. Shaking could be done at the stage of sampling the precise animation, adding noise to the
parameter values per frame. It is an interesting question, if for facial animation some principles of
‘good shaking’ could be formulated.

4.2 Conclusions
We have presented an interactive graphical editor to be used for defining requirements for the facial
movement to be produced and for composing facial animations which fulfil the requirements. The basic
idea is that the requirements concerning the animation to be produced as well as the characteristic
dynamical expressions and facial motion idiosyncrasies of the character can be expressed as constraints,
and the concrete animation should be always a solution of the resulting CSP. The set of constraints
to be satisfied are not known in advance, as the animator has the freedom to modify requirements
interwoven with editing the animation. Moreover, the addition/deletion of CPs implies changes in
the set of constraints. As the editor allows to declare and maintain requirements concerning an entire
animation and reusable building blocks, it can be used as a ‘motion sculpturing’ tool. This is a novel
functionality, in contrast to the single, concrete motion editing supported by other animation and
motion synthesis tools.

The presented methodology can be applied for animation domains where there are no obvious
and unique given constraints to relate the motion parameters of components, either because they do
not exist/are not known, or the animator just wants to generate deformations and animation effects

4. Discussion 24

beyond physical reality. Typically, cartoon character animation is such a domain.

From the point of view of constraint satisfaction, the task is to constantly repair the latest solution
as a response to changes initiated by the user. The range of possible repairs — a subset of all the
solutions — should be restricted dynamically. If this set turns out to be empty, the action initiated by
the user is not carried out. Otherwise, the best of the possible repairs is selected and the animation
is updated accordingly. The major service of the editor is to assure that the animator ‘remains in the
feasible region’. This is achieved by assuming that the feasible time and parameter range for each
CP is a closed interval, and using interval propagation to recompute these intervals. Allowing certain
types of monotone numerical constraints, the ranges are really intervals and can be computed fast.

Different principles for restricting the acceptable repairs and for comparing solutions can be defined
by the user and incorporated into the general framework of interval propagation.

ACKNOWLEDGMENTS

We thank Eric Monfroy for the useful discussions on interval propagation, Han Noot and Mark Savenije
for implementing FaceEditor and Persona, and Paul ten Hagen for his comments on earlier versions
of the paper. We are indebted for the remarks by the anonymous referees and for stylistic suggestions
by Scott Marshall and Kalméan Ruttkay. The work has been carried out as part of the ongoing FASE
project, sponsored by STW under nr. CWI 66.4088.

REFERENCES
Alias Wavefront (1998) Alias 8 Online documentation, http://www.fh-jena.de/aliasguide/

Apt, K. (1998) The essence of constraint propagation, CWI Quarterly, Vol. 11. Nr. 2-3. pp. 215-249.

Benhamou, F., Older, W., Van Henteryck, P. (1994). CLP(intervals) revisited, Proc. of International
Symposium on Logic Programming (ILPS-94), pp. 124-138.

Benhamou, F., Older, W. (1997) Applying interval arithmetic to real, integer and boolean constraints,
The Journal of Logic Programming, Vol. 32. Nr. 1. pp. 1-24.

Borning, A., Freeman-Benson, B. (1995) The OT1I constraint solver: a constraint library for construct-
ing interactive graphical user interfaces, Proc. of the First International Conference on Principles
and Practice of Constraint Programming, pp. 624-628.

Borning, A., Anderson, R., Freeman-Benson, B. (1996) Indigo: A local propagation algorithm for
inequality constraints, Proc. of the ACM Symposium on User Interface Software and Technology,
pp. 129-136.

Borning, A., Freeman-Benson, B. (1998) Ultraviolet: A constraint satisfaction algorithm for interactive
graphics, Constraints, Vol. 3., 1. pp. 9-32.

Brennan, S. (1985) Caricature Generator: The dynamic exaggeration of faces by computer, LEONARDO,
Vol. 18. Nr. 3. pp. 170-178.

Bruderlin, A., Williams, L. (1995) Motion signal processing, Proc. of SIGGRAPH’95, pp. 97-104.

Cervone, R., Cesta, A., Oddi, A. (1994) Managing temporal constraint networks, Proc. of the Second
Int. Conference on Artificial Intelligence Planning Systems, pp. 13-18.

CharToon Home Page (1998) http://www.cwi.nl/FASE/Cartoon/

Cohen, M. (1992) Interactive spacetime control for animation, Proc. of SIGGRAPH 92, pp. 293-302.

Da Silva, F., Velho, L., Cavalcanti, P. (1997) A new interface paradigm for motion capture based
animation systems, Proc. of Computer Animation and Simulation’97 Furographics Workshop,
pp- 19-36.

Ekman, P., Friesen, W. (1978) Facial Action Coding System, Consulting Psychology Press Inc. Palo
Alto, California

Essa, 1. (1994) Analysis, Interpretation, and Synthesis of Facial Erpressions. PhD thesis, MIT
Medial Laboratory, available as MIT Media Lab Perceptual Computing Techreport #272 from
http://www-white.media.mit.edu/vismod/

Essa, 1., Basu, S., Darrel, T, Pentland, A. (1996) Modeling, tracking and interactive animation of
faces and heads using input from video, Proc. of Computer Animation’96, pp. 68-79.

4. Discussion 25

FaceWorks (1998) DIGITAL FaceWorks Animation Creation Guide, Digital

FAMOUS Home Page (1998) http://www.famoustech.com/

FASE Project Home Page (1998) http://www.cwi.nl/FASE/Project/

Georget, Y., Codognet, P., Rossi, F. (1999) Constraint retraction in CLP(FD): Formal framework and
performance results, Constraints, Vol. 4. Nr. 1. pp. 5-42.

Gleicher, M., Litwinowicz, P. (1996) Constraint-based motion adaptation, Apple TR 96-153.

Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F. (1998) Making faces, Proc. of SIG-
GRAPH’98, pp. 55-66.

Hodgins, J., Wooten, W. L., Borgan, D. C., O’Brien, J. F. (1995) Animating human athletics, Proc.
of SIGGRAPH’95, pp. 71-78.

Kokkevis, E., Metaxas, D., Badler, N. (1996) User-controlled physics-based animation for articulated
figures, Proc. of Computer Animation’96, pp. 16-25.

Litwinowicz, P.C. (1991) Inkwell: a 2 1/2-D animation system, Computer Graphics, Vol. 25. Nr. 4.
pp. 113-122.

Lhomme, O. (1993) Consistency techniques for numeric CSPs, Proc. of IJCAI’93, pp. 232-238.

Oster, G., Kusalik, J. A. (1998) ICOLA — Incremental constraint-based graphics for visualisation,
Constraints, Vol. 3. Nr. 1. pp. 33-59.

Owen, M., Willis, P. (1994) Modelling and interpolating cartoon characters, Proc. of Computer Ani-
mation '94, pp. 148-155.

Pachet, F., Delerue, O. (1998) MidiSpace: A Temporal Constraint-Based Music Spatializer, Proc. of
ACM Multimedia ’98, pp. 351-359.

Pachet, F. (1999) Constraints and musical harmonization: a survey, Constraints, to appear.

Parke, F., Waters, K. (1996) Computer Facial Animation, A K Peters.

Perlin, K. (1995) Real time responsive animation with personality, IEEE Transactions on Visualization
and Computer Graphics, Vol. 1. Nr. 1. pp. 5-15.

Persona Home Page (1998) http://www.cwi.nl/FASE/Spring/

Thérisson, K. (1996) ToonFace: A system for creating and animating interactive cartoon faces, MIT
Media Laboratory Technical Report, 96-01.

Terzopoulos, D., Waters, K. (1993) Analysis and synthesis of facial image sequences using physical
and anatomical models, IEEFE Trans. on Pattern Analysis and Machine Intelligence, Vol. 15. Nr.
6. pp. 569-579.

Van Reeth, F. (1996) Integrating 2 1/2-D computer animation techniques for supporting traditional
animation, Proc. of Computer Animation’96, pp. 118-125.

Van Hentenryck, P. (1989) Constraint Satisfaction in Logic Programming, MIT Press, Cambridge,
MA, 1989.

Van Hentenryck, P. (1997) Numerica, MIT Press, Cambridge, MA,

Van Hentenryck, P., Laurent, M., Benhamou, F. (1998) Newton - Constraint programming over
nonlinear constraints, Science of Computer Programming, Vol. 30. Nr. 1-2. pp. 83-118.

Williams, L. (1990) Performance-driven facial animation, Proc. of SIGGRAPH’90, pp. 235-242.

Witkin, A., Welch, W. (1990) Fast animation and control of nonrigid structures, Proc. of SIG-
GRAPH’90, pp. 43-252.

Witkin, A., Popovic, Z. (1995) Motion warping, Proc. of SIGGRAPH’95, pp. 105-108.

Vander Zanden, B., Myers, B. (1995) Demonstrational and constraint-based techniques for pictorially
specifying application, objects and behaviors, ACM Transactions on Computer Human Interac-
tion, Vol. 2. Nr. 4. pp. 308-356.

