
te
ce
on
-

r-

of
ive
y-

ur-
er

or-

ot

,

n-

e –
l

or
de-
ch

r-
as
c-
nt-

to
pter
nd
res
-

o-
the
for
on
ys-

Animated CharToon Faces

Zsófia Ruttkay Han Noot

Zsofia.Ruttkay@cwi.nl, Han.Noot@cwi.nl

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands
Abstract
Human faces are attractive and effective in every-day communica-
tion. In human-computer interaction, because of the lack of suffi-
cient knowledge and appropriate tools to model and animate
realistic 3D faces, 2D cartoon faces are feasible alternatives with
the extra appeal of ‘beyond realism’ features.
We discuss CharToon, an interactive system to design and animate
2D cartoon faces. We give illustrations (also movies on CD) of the
expressive and artistic effects which can be produced. CharToon is
fully implemented in Java, allows real-time animation on PCs and
through the Web. It has been used with success by different types
of users.

Keywords: Cartoon animation, facial animation, computer-aided
in-betweening, performer-driven animation.

1 INTRODUCTION

Computer facial animation has been a flourishing research topic
for more than 25 years, aiming at models which can be animated
and used to (re-)produce facial expressions reflecting emotions
and mouth movements for spoken text [10, 19, 28]. Besides the
needs of the film- and entertainment industry, there has been grow-
ing interest from the area of human-computer interaction technol-
ogy. A talking head is a pleasing experience for a computer user,
in contrast to traditional user interfaces. It is proven that a synthetic
human face attracts the user’s attention, improves the effectiveness
of using the system and even has influence on the contents of us-
ers’ ‘answers’ given to the computer [37]. There are still many es-
sential questions to be answered concerning such a ‘human
interface’. What face should one use: realistic or cartoon-like; 3D
or 2D; of a famous person or a generic one; of what sex and with
what features? What expressional repertoire should the face have,
and how should the expressions be shown, blended and concate-
nated?

Most of the research on facial modelling and animation has
been aiming at (re-)producing realistic faces [20, 32, 33]. In spite
of enormous efforts, no easy-to-use technology has emerged yet
for producing faces with full realism and for faithfully animating
them.

Even the most flattering demos of synthetic faces [4, 32] elimina
essential features like the hair, rely on a texture-map of a real fa
and use face-tracking devices to drive the synthetic face based
the facial motion of a performer [11, 38]. The cost and time of pro
ducing synthetic ‘realistic’ 3D faces with the present tools is a fo
bidding factor for many applications.

On the other hand, in many application fields realism is not
major importance. One would like to have an attractive, express
face with easy to recognise distinctive communicational (e.g. pa
ing attention), cognitive (e.g. agreeing) and emotional (e.g. s
prise) expressions. The world of non-realism does have furth
advantages:
• expressions can be exaggerated by non-realistic features,

well-known from traditional animations and strip-books;
• there is much freedom in designing more or less antropom

phic faces;
• non-realistic faces often have some artistic touch, which

makes them more appealing than just seeing a – perfect or n
– real face;

• once obviously a face is not pretending to be a ‘realistic’ one
the expectations and judgement of the user are adjusted;

• last but not least, the technological aspects of animated no
realistic faces allow real-time and Web-based applications.

We have been motivated by the above observations, when w
next to maintaining a physically-based 3D ‘realistic’ facial mode
[14] –, started to experiment with 2D cartoon-like faces. Our maj
interest was to explore the dynamism of facial expressions. To
sign 2D faces and animate them, we were looking for a tool whi
fulfils the following requirements:
• is ‘light’ and easy to use;
• accepts face tracker data as ascii input;
• allows subtle control of the animation;
• runs on Unix machines as well as on PCs.

As we could not find an appropriate tool, we had to develop it ou
selves. The first version of CharToon is ready, has allowed us
well as artists to make a great variety of non-realistic animated fa
es, has been used for ‘useful purposes’ as well as for experime
ing and having fun.

In this paper we give an account for our CharToon system,
be used to design and animate 2D cartoon faces. In the next cha
we give an overview of related work, from research groups a
commercial software companies. Then we introduce the featu
of CharToon in detail, which is followed by discussion and exam
ples (with colour plates at the end) of possible kinds of non-phot
realistic faces and animations supported by the tools. Most of
examples are snapshots from short films (available on the CD,
samples see [5]). Following the examples we list some applicati
domains. Finally we sum up the features and benefits of our s
tem, and outline future work and possible extensions.

to
a-
to
1].

er-

po-

o-
s

m-
ript

n
file
-

ssi-

e-
er-
un
ce

s a
ni-

ch
the
nce

ate
eo-
m-
2 RELATED WORK

Non-photorealistic renderinghas become a very popular topic re-
cently both in research circles and in the film and animation indus-
try. This is well reflected by the special sessions and tutorials at
recent Siggraph conferences and the success of first examples of
computer-generated animations with artistic rendering styles such
as 2D ink paint [16], 3D painted worlds [1, 7, 25] or sketchy 2D [6].
(For a complete overview of research and experiments in non-pho-
torealistic rendering and animation, see [18].)

The main reason for this shift in the use of computers is possi-
bly the recognition that ‘realistic’ computer-generated images, in
spite of the enormous development in rendering, do give a synthet-
ic, perfect and cold impression. This is disappointing not only in ar-
tistic applications, but even in engineering designs where it is
important to provide a pleasing, attractive and familiar impression
of the product for potential customers [18]. These considerations
hold also for facial animation, where the complexity of the real hu-
man face and the lack of knowledge/practical tools to model it pro-
vide further motivation to turn to non-photorealistic faces. This can
be the reason for earlier work on2D cartoon faces[2, 30, 34] and
generallight-weight 2D animation systems[15, 24, 26, 27, 35].
The first two facial animation systems do not allow the design of
dynamical expressions: in [2] cartoon faces can be animated by im-
age morphing, in ComicChat [30] stills are used. Our system is es-
pecially equipped for facial animation, and in this application field
is superior to the listed general ones, serving a wider domain of 2D
animations. Comparing CharToon to Inkwell [24], there are simi-
larities in the main objectives (light and easy to use, flexible anima-
tion system) and the technical solutions (exploiting layers, allowing
the manipulation of motion functions, grouping/hierarchy of com-
ponents). While Inkwell has several nice features which CharToon
lacks, CharToon offers extras which are especially useful for facial
animation: special skeleton-driven components and an extensive
set of building blocks to design faces; the support to re-use compo-
nents and pieces of animations, a separate graphical editor to design
and manipulate animations and real-time performance. Similar ar-
guments hold for MoHo [26], a recent general, light and vector-
based 2D animation system. While skeleton-based motion (with in-
verse kinematics) is supported in MoHo, it is not possible to manip-
ulate time-curves of parameters. Also, there is no player to generate
real-time animation from ascii files.

Editing animations with CharToon can be seen as extension to
parametric keyframing , supported by all commercial animation
packages. In CharToon, editing operations are allowed on pieces of
parameter curves. Moreover, CharToon is being extended with con-
straint mechanisms, which will provide a basis for manipulating an-
imations on a higher level and in a descriptive way.

Current commercial facial animation packages all assume a 3D
facial model, which can be animated either by re-using a set of pre-
defined expressions without the possibility of fine-tuning them
[12], or by tracking the facial motion of aperformer [13]. In the
latter case, the editing operations are performed as Bezier curve op-
erations.

This also applies for most of the generalmotion warping [39]
and signal processing based motion curve transformations [3] tech-
niques. An exception is the work onconstraint-based motion ad-
aptation [17], which uses the combination of motion signal
processing methods and constraint-based direct manipulation, in
order to be able to modify an existing motion to meet certain re-
quirements. There is a big literature ofmotion synthesisandmo-
tion control systems based on some general constraints and
principles of (realistic) physical motion [21, 23]. CharToon is more
general in the sense that any object, with non-realistic dynamical
characteristics can be animated.

From the technical point of view, by using vector-based graphics
achieve real-time performance and possibilities for Web applic
tions, CharToon is in line with the current research in the W3C
incorporate real-time vector-based animation into Web pages [3

3 THE CHARTOON SYSTEM

3.1 Architecture

CharToon is a collection of Java programs by which one can int
actively construct parametrized 21/2D drawings and a set of time
curves to animate the drawings. CharToon consists of 3 com
nents:

Face Editor is a 21/2D drawing program with which one can de-
fine the structure, the geometry, the colours and the potential m
tions of the face. A collection of extensible building block
facilitate the construction of faces.

Figure 1: Architecture of CharToon

Animation Editor is an interactive ‘animation composing’ pro-
gram, to define the time-behaviour of a drawing's animation para
eters, provided by Face Editor. Animations can be saved as a sc
(for later re-use), or a movie script can be generated.

Face Playeractually generates the frames of an animation, o
the basis of the animation parameter values in the movie script
provided by Animation Editor and the face description file provid
ed by Face Editor.

These programs exchange ascii data with each other and po
bly with other programs outside CharToon (see Figure 1).

The programs usually are used together in an integrated fram
work, making it easy to design a face and test its motion in an int
woven and incremental way. But the components can be r
independently, exchanging data with other programs. E.g. Fa
Player can be run with data gained from an application such a
face tracker, or Animation Editor can be used to post-process a
mation produced by a text editor or obtained as tracked data.

3.2 The Face Editor
How faces are created
Face Editor is the component of the CharToon system by whi
drawings (of a face) are created. The program is intended for
generation of 2D faces with a cartoonish or schematic appeara
which can later be animated (see Plate 2).

Drawings are build up from pre-cooked components (see Pl
1, Figure 2). Generally speaking, components are elementary g
metrical shapes like polygons, ellipses and splines or they are co

camera

Recogniser

Animation Editor

Face Player

Face Editor

facial
actions

neutral
face

animated
face

components
library

animation
library

CharToonanimation

movie
script

USER

y
to

d-
e
nge

l-
ile
on
of
h

be-

u-
el-
ill
n.
e
on

n
ef-

nimated
binations of those shapes. One can include ‘.gif’ images too, e.g. to
use hand-painted and scanned designs as backgrounds.

One includes a basic component in the drawing by selecting it
from a menu and dragging it into place (see Plate 1). After a com-
ponent is included, it can be edited, i.e. its appearance – size, shape,
colour – can be changed within the limits of the component’s gen-
eral nature.

While creating a component of a drawing, one also specifies its
potential dynamical behaviour, to be used when animating it. The
possibilities are:
• change location;
• scale in the horizontal- and/or vertical direction;
• change visibility;
• and most importantly: most of the components can change

shape according to changing position of control points they
contain.

While creating a face, it is possible to test how the face will move.
In the so called Test Mode the user can drag the control points
around one after the other and see the effect.

The building blocks
The elementary building blocks are thebasic components. The
components are defined similar to vector-based graphical objects,
by points. The defining points can be of four kinds:
• master control points which are used to animate the object,

as the position of the control points is given by animation
parameters;

• slave control points which each are assigned to a master con-
trol point and move as their master control point does;

• frozen points which never move;
• fixed points which may move, if driven by some control

point, otherwise they remain in place.

When the user inserts a control point, he defines the horizontal and/
or vertical range for its potential position. During an animation, the
control points are to be positioned within the defined range.

From the point of view of how basic components can change
shape dynamically, there are two kinds: contour-animated basic

components and skeleton-animated basic components.Contour-
animated basic componentsare (one and only one) polyline, pol-
ygon (closed polyline), ellipse or image. They are defined b
points on their contour. Their shape changes directly according
changes in the position of the control points on their contour. In a
dition, polygons and ellipses can be empty or filled. Naturally, on
can also use variants of these components which never cha
shape.

Skeleton-animated basic componentsconsist of a skeleton
and a body, both of which are a polygon or polyline. Only the ske
eton contains control points and possibly also fixed points, wh
the body contains only fixed or frozen points. When the skelet
moves (i.e. its control points change position) the fixed points
the body move in synchrony with the skeleton. The way in whic
body points are coupled to the skeleton leads to the distinction
tween point skeleton and edge skeleton (basic) components.

Point skeleton components(see Figure 3) work as follows:
When a component is created, each (fixed) point of the body is a
tomatically assigned to the closest point of the skeleton. This sk
eton point may be a fixed or a control point. In the latter case, it w
drive the movement of the point of the body during animatio
Namely, the initial vector from the point on the skeleton to th
point on the body will remain the same, no matter how the skelet
point moves.

When a body point is closest to a fixed point, it remains i
place. This last feature gives an easy way to roughly mimic the
fect of skeletons with joints.

Figure 3: Point skeleton with joint, to be used as eyebrow.

Figure 2: Stages in the construction of a face: First the static background is constructed from non-animated polygons (left), next a
components (middle) are included to produce the final face (right).

 Polygon for nose

Filled Polygons for hat and face

Left- and Right Brow

Eye

Animated Filled
 Poly

Mouth
Static Background Animated Components Animated Face

Coupled Skeleton- and Body Point
Coupled Points
move together

de-
s.

in-

nd
m-

or

d:
la-

d
or
Ed-
he
tral
l-

-
a-
can
ied

it
et

on

er-

t
d.

ra-

to
ng

by
tal

se-

lat-
by
ser,

ns
es.
and
ted
e to
In case ofedge skeleton components(see Figure 4) each body
point is coupled to an edge of the skeleton. Initally, body points are
projected on skeleton edges. When thereafter the skeleton moves,
the initial projection of the body point on the skeleton is made to
move in such a way that the ratio of the distances of this projection
to the endpoints of the skeleton edge on which the projection lies is
kept constant. (Note that the skeleton may change length when its
CPs are moved!) The body point then follows the motion of its in-
itial projection in such a way that:
• It stays at the same distance from the skeleton edge as it had

initially.
• Its actual projection always coincides with the moving initial

projection.

The most striking consequence is that in principle all body points
of an edge skeleton component can move.

Figure 4: Edge skeleton component neutral and deformed, to be
used as upper lip.

There are no simple and definitive rules to tell which type of skel-
eton component to use for a given effect. In general, the effect of a
point skeleton is easier to comprehend, as the (local) shape of the
body is preserved. If the body has a subtle shape, it can be preserved
only by a point skeleton with many control points, which makes the
animation task complex. Hence in such cases a simpler edge-skel-
eton may provide a good solution.

After having inserted a basic component, the user is free to add
all kinds of points to it which make sense for the type of component.
Hence a great variety of objects can be defined, differing in shape
and skeleton (potential deformation).

For typical features in a face such as a mouth or eyebrow, com-
posite components are provided.

Composite componentsare made of one or more, possibly hi-
erarchically grouped basic components as building blocks. There
are composite components provided to make eyebrows, eyes and
mouths of different complexity. When using a composite compo-
nent, the user can transform (scale, drag,...) it as a unit, but he is also
free to adapt it by editing its basic building elements.

The user is also supported in defining his own composite build-
ing blocks and store them in a library for later re-use. Such a so-
calleduser defined compositecomponent can be any, hierarchi-
cally ordered assembly of basic components, composite compo-
nents and other user defined composites. In a drawing, user defined
composites behave as any other composite component, they can be
similarly selected, transformed and edited.

Face editing functions
Components as a unit can be manipulated by the general copy/drag/
scale/flip type operations. Basic components can be modified as de-
scribed above, by selecting one (may be one as a lower-level build-
ing block of a composite component) and then choosing from a set
of choices generated according to the type of the sub-component.

Polygons and polylines can be turned into smooth shapes by
fining spline interpolation on its points instead of straight line
This effect can be limited to sequences of points too.

Lines (smooth or curved) between two points can be turned
visible.

Components can be placed in 10 layers, both in the backgrou
and in the foreground. In the background only non-animated co
ponents can be placed.

Visibility of the component and skeletons can be set forever
be defined as an animation parameter.

Last but not least, existing control points can be fine-tune
dragged, ranges (in x and/or y direction) set, granularity defined,
belled, etc.

3.3 The Animation Editor
How an animation is created
Animation Editor is a graphical editor for the specification an
modification of animation parameter values for computer facial (
other) models. In the particular case of faces produced by Face
itor, the parameters are x and/or y coordinates of control points. T
information on the parameters – name, extreme vales and neu
value – is taken by reading in a face profile file containing the re
evant data. Profile files are generated by Face Editor.

Animation Editor operates on a window which looks like a mu
sical score (see Figure 5). There is a 'staff' for every animation p
rameter; the lines on each staff reflect the values the parameter
take. The behaviour in time of an animation parameter is specif
by placing points on its staff. Between the specified values –knot
points – linear interpolation takes place. Though in principle
would be possible to use smooth interpolation, we have not y
committed ourselves to this because of two reasons:
• In case of facial movement, there are no accepted interpolati

types like the easy-in/out one in body animation.
• Wwe wanted to provide complete freedom to define and exp

iment with facial movements. Linear interpolation allows to
approximate different curves (e.g. sinusoid), which would no
be the case if a higher-order interpolation would be enforce

Knot points can be inserted, moved and deleted by mouse-ope
tions, at any time for each channel.

Face Player can be activated from Animation Editor in order
see how the animated face would look like or move. At each editi
operation, the face is updated according to the snapshot defined
the parameters at the time corresponding to the cursor’s horizon
position. The animation being made can be tested, by playing (
lections of) the animation.

An animation can be saved and further processed or re-used
er. For a finished animation, a movie script file can be generated
sampling the parameter curves at a rate which is set by the u
containing parameter values for each frame.

Animation editing functions
The processing of animations is facilitated by editing operatio
which can be performed on a time slice of certain selected stav
One can do cut and paste operations, time- and value scaling
flip on a portion of one or more curves. Cut and paste is suppor
between different parameter channels, hence e.g. it is possibl

Body Points coupled to edge Points move
with edge

ng

d

)

y

ple
Cs.
al-
-

n-
il-

ial
ct

or the
‘copy’ motion defined for one half of the face to the other half, or
defined for the upper mouth to define the motion of a moustache.

Different views (zoom, hide, overview) and grouping of the
staves help to focus on certain animation parameters.

One can open several animations, possibly made for different
faces, and by cut & paste re-use (parts of) one animation to make a
new one for a different face.

There also is a facility to switch on and off an arbitrary number
of audio channels. If the audio is first annotated with (ascii) labels
(e.g. using a program like SGI's Soundtrack), Animation Editor will
display these labels at their proper place in time. Thereby one can
synchronize the audio with the animation parameters.

3.4 Face Player

Face Player is a movieplayer to play animations based on the movie
script file provided by Animation Editor and on the basis of the face
description file produced by Face Editor. Typically, Face Player is
started up from Animation Editor to see the effect of the animation
being made (see Figure 5), or alone, to play a finished animation.

Face Player takes ascii data as input to generate the pictures
with the animated face. Hence it is possible to animate a face real-
time. Face Player can play movies from a file, but can also obtain
parameters from an IPC mechanism which transfers data from an
application (e.g. face-tracker) in real-time.

Components can be drawn in separate threads, which makes it
is possible to deal with different sources of animation parameters
for different components.

An applet version of Face Player can be tried out from [5].

 3.5 Implementation

CharToon is implemented in Java 1.1, because of the followi
considerations:
• portability between Unix-, Windows- and Macintosh plat-

forms;
• possibility of producing animations for Web-applications, by

embedding Face Player in an applet [5] which runs locally, an
to which only the ascii data has to be transmitted;

• its interface and graphics tools (the AWK toolkit) where (just
sufficient;

• there is support for multi-threading which opens the possibilit
of driving animations from multiple sources.

The implementation has proven to be fast enough to render sim
faces at 25 frames/second frame rate on 200 Mhz Pentium II P
As the graphical rendering speed of Java 2D is too slow for re
time animation, we could not profit from its extra rendering facili
ties.

The first version of CharToon, with on-line help facilities and
complete manual is finished, and is running on Windows, Maci
tosh and Unix machines. An applet version of Face Player is ava
able at [5]. Currently we are investigating possible commerc
partners to develop it further into a stand-alone low-price produ
or to integrate it into an existing complex animation package.

Figure 5: Snapshot of an Animation Editor window, with Face Player showing the face to be animated. The time curve f
Right_Out_Tear parameter is a hand-edited extension to recorded data shown in the other 3 staves.

ver,
e a

ay

es-
uce
ges

case
e to
If

r the
ns,
n

ri-

e shape
ression
4 NPAR with CharToon

4.1 Feature and expression repertoire

CharToon separates theappearance, thedynamism (possible de-
formations) and thebehaviour of a face. The first two aspects are
incorporated in the definition of the face, while the latter in the ani-
mation. CharToon technically supports the re-use of facial compo-
nents and pieces of animations as building blocks. Based on careful
analysis of specific facial features of the basic expressions – happi-
ness, surprise, fear, sadness, anger and disgust – , for each feature
(eye, mouth, eyebrow,...) different alternative designs were pro-
duced, forming together thefeature repertoire. For each feature,
the deformation for the basic expressions were given (in terms of
animation parameters), forming theexpression repertoire. The al-
ternatives for a feature differ concerning deformation control mech-
anism and/or structure. E.g. the functionally simplest eyebrows are
the ones which do not change shape but may be moves up/down,
and the most complex ones have 4 control points, with which one
can produce subtly deformed eyebrow shapes.

Two feature repertoire elements with the same deformation
control mechanism have ‘identical dynamical possibilities’, as there

is a one-to-one correspondence of the control parameters. Howe
the difference in structure (basic components used) will produc
difference in the deformed form.
Once a feature is selected from the repertoire, the designer m
adapt it by changing its

a) rendering,
b) shape and
c) dynamical ranges.

As the first type of change does not affect the dynamism, expr
sions from the expression repertoire can be re-used and will prod
the same result. The last two types of changes both result in chan
in the deformed shape, and thus when changing one aspect, in
of complex shape and/or control mechanims, the other may hav
be modified too in order to achieve a desired deformation effect.
these changes are done with care, the expression repertoire fo
original feature can be re-used and will produce similar expressio
but with a different ‘look’ and/or exaggerated. In this way, one ca
design quickly a big variety of faces, and experiment with the va
ations in appearance and dynamism (see Figure 6).

Figure 6: Variants of a face, all built up from identical feature repertoire elements. The variants are gained by changing the rendering, th
and colour of the building blocks and the dynamism (ranges of control parameters). All the four faces show the identical ‘happiness’ exp
from the expression repertoire.

change
rendering

change
dynamism

change
shape

v-

ull
y
th
.

e-
n

e-
or
al
tic
e

;
ch

er;
re-

e-
of
al
un-
an

ool

o

i-

i-
in
at-
up
be

are
o-

on
e

4.2 Non-photorealistic 2D faces

The functionalities of Face Editor, though at first sight seemingly
limited, do allow a great variety of cartoonish faces (see Figure 6, 7
and 8; Plate 4 and 5). As for the complexity and realism of the face
to be produced, one has a choice for each facial element as:
• faithful (approximation of) shape from a photo;
• exaggerated shape of a realistic feature (e.g. very thick lips);
• replaced by simple forms (ellipse as mouth, straight lines as

eyebrows);
• added feature which does not correspond to any feature on the

real face (e.g. halo around the head).

As for rendering style, faces can be designed as:
• line drawings;
• flat faces with smooth filled shapes;
• paper cut-outs, by using not so smooth shapes;
• a combination of realistic or painterly static background

(scanned painting/photo) and dynamic features (mouth, mo
ing eyes,...),

• ‘pseudo 3D’ faces, where shadows (dynamic components
which are animated too) give the illusion of 3D.

The colouring of the components in a drawing can be done with f
colours, or with black and white, or with grey scales. Finally, b
carefully using the layering option of CharToon, the effect of dep
in the background and 3D context for the head can be achieved

4.3 Non-realistic animation

In order to achieve expressiveness and appealing animations, usu-
ally a non-photorealistic face must be animated in a non-realistic
way. To begin with, usually features of the cartoonish face do not
match the real features of the face.

Moreover, it is easy to define features with ‘beyond realism’
deformation capabilities: eyeballs can bulge, eyebrows can be
pulled extremely high, a face can grow fat or shrink narrow. Also,
non-facial features can be animated to strengthen a facial expres-
sion, e.g. hair rising up and a cap flying above the head in case of
surprise.

It is, naturally, possible to compile a (non-realistic) animation
from scratch. However, the different set of features and deforma-
tion possibilities allow inventive re-use of realistic (captured) data
to drive a cartoon face:
• a ‘realistic’ range can be extended to achieve exaggerated

motion;
• features corresponding to static (or hardly moving) ones in the

real face can be animated, usually to emphasize the motion of
some dynamic feature;

• the captured data can be extended with animation made from
scratch for elements (falling tears) not present in reality;

• in general, there is a variety of ways to map the motion of cap-
tured features of a real face on a set of features of a cartoon
face: an animation parameter can be the max., average or some
other function of values gained from several data channels.

Moreover, the style of motion of one or more features can be
changed:
• a normally smooth motion can be turned into ‘trembling’

motion, or the changes can be made sharp;
• a jerky motion (e.g. noisy captured motion) can be smoothed;
• speed can be changed;
• physically impossible motion patterns can be achieved (e.g.

jumping features, non-coupled motion of ‘anatomically con-
nected’ elements).

All the above animation effects can be achieved with the impl
mented version of Animation Editor, by manipulation animatio
data (knot points) directly.

With the next version (being implemented), it is possible to d
fine and (re-) use pieces of motion on a high, conceptual level. F
an animator it would be very helpful to be able to define the faci
repertoire of a character, especially when inventing non-realis
animations for cartoon-like faces. In the next version one will b
able to define different characteristics of the facial repertoire:
• the general dynamical characteristics of a cartoon face, in

terms of limits of change of speed and value on parameters
• the behavioural repertoire of the character to be animated, su

as symmetric eyebrow movement, as typical for the charact
• any expression for a face – even ones without a realistic cor

spondence – can be defined.

These characteristics will be automatically enforced, and pred
fined building blocks (e.g. a smile) can be re-used in the course
editing an animation for the face. Moreover several, non-identic
expressions of the same kind can be generated, avoiding the
pleasant effect of using identical pieces of animations whenever
expression is to be produced. Thus the facial animation editing t
has two usages:
• to sculpture the dynamism and ‘mimic repertoire’ of a face t

be animated;
• to make animations for a face with a given mimic repertoire,

meeting certain further requirements set for the particular an
mation.

The animation building blocks will not be stored as a piece of an
mation (as in the present implementation), but will be defined
terms of constraints which the corresponding animation has to s
isfy. E.g. in case of a smile, both mouth-corners should be pulled
for some time, and then after a short while the expression should
released. The durations and final location of the mouth corners
not set to a specific value, but some limits are prescribed. More
ver, if one wishes to have a perfectly symmetrical smile, the moti
of the two mouth corners should be perfectly ‘mirrored’. Otherwis

 a) b) c) d)
Figure 7: Faces driven by the same performer

 6-

s
sim-
n

le
l-

r-
s-

rn

ar-
e

all

n,
’

some degree of asynchrony is allowed. As this example further sug-
gests, there are in general many concrete pieces of animation which
satisfy the criteria for an expressions. This separation of the decla-
ration of the dynamical potential of a face (how components can be
deformed), the expression repertoire of the face (in what way are
the features deformed in case of expressions) and a piece of anima-
tion which fulfils the criteria provides the interesting possibilities to
experiment with faces of different geometry but of more or less
identical facial repertoire as well as re-using pieces of animations
for faces with different facial dynamism and repertoire.

4.4 Examples and demos

CharToon has been used by three groups of people: the system de-
velopers, professional animators and researchers in human ergo-
nomics at a third party. In Figure 8, some of the resulting designs
are shown. Below we discuss animations made by them, with col-
our snapshot illustrations. Most of the complete animations can be
seen on the CD. Samples are available on-line [5].
• Lily (see Plate 4) is an animation of a single subtly drawn car-

toonish female face in ‘flat smooth’ style, with dynamic com-
ponents to demonstrate how basic human expressions can be
achieved by exaggerated and non-realistic features (e.g.
change of face width). The artist wanted to have subtle control
of the deformation of the features, which was achieved by
using 93 control parameters.

• NineFaces (see Plate 5) is a collection of 9 very stylistic
human and non-human heads, which can be animated to
exhibit some basic expressions and talking. The faces have
12 control parameters each. The goal was to show that with
simple design (straight lines) and control (often only scaling
and replacement of features) attractive and expressive face
can be made. Such faces could be used on Web pages, as
ple representatives of users in multi-user environments, or i
applications for kids.

• LineHeads(see Plate 6) are two heads, each made of a coup
of curves (with partially invisible pieces), controlled by a ske
eton with few control points. The pen drawing style and the
somewhat unpredictable deformation of the curves give inte
esting effects. Moreover, this is also an example how 3D tran
formations can be mimicked, to achieve that the two faces tu
towards each other.

• Scenery (see Plate 7) is an example to demonstrate that Ch
Toon can be used for non-facial designs and animations: th
windmill turns, clouds and trees move according to blowing
wind. By the careful of use of layers, an illusion of depth is
achieved.

• The last example compares three non-photorealistic faces,
driven by performer data. In Plate 3 (and Figure 7) the same
snapshots are shown for each face. In a) the real face is show
with the blue dots which are tracked. In b) a ‘close-to-realistic
drawing of the face is shown, while in c) a cartoon version is

Figure 8: Snapshots from animations made by CharToon

to
e

the
-

nts
ur-
r-
nd

al
in-
ns
ire

to
-
as
ser,
o be
ific
s’

th
the

a-
es

en
so-
p-

of
is-
ly
e.
a-
er

-
M.
ns,
re
n-
es-
n
he
ns
ing

t
s

x-
8

e

-

given. Both b) and c) faces use structures with control points
representing (some of the) blue dots. In this case not only the
features and the rendering style are non-photorealistic, but the
ranges for the control points are exaggerated. Thus the very
same (performer) data produced exaggerated motion of e.g. the
eyebrows. It took 2 hours for the animator to turn face b) into
c) in Face Editor, and then by re-using the captured data a long
animation was produced for the new face in a couple of min-
utes. In d) a cartoonish moon is shown with an expression pro-
duced by using the captured data.

The first 4 animations were all made from scratch, and demonstrate
different benefits of faces made by CharToon: expressiveness, ease
of control, funny or artistic look. The first two movies have sound,
which demonstrates the added value of sonic effects.

In the last case, CharToon has been used to make animations on
the basis of performer data. The tracked points may correspond to
feature points used in ISO MPEG4 coding [22], but other codings
[8] or arbitrary sets of feature points can be dealt with.

4.5 Possible applications

There are several potential applications for faces produced by Char-
Toon.
• Animated faces to be used on Web pages, as guides, represen-

tations of the owner (in different moods), representation (with
different expressions) of status or diagnosis of a complex sys-
tem.

• Telecommunication/telepresence: animation for non-realistic
faces can be broadcasted through low bandwidth channels.

• The multi-thread implementation of Face Player gives support
for net based rendering of interactions between avatars which
are controlled from different remote places but shown on a sin-
gle screen.

• Talking faces with speech synthesis or text in speech bubbles.
• Faces with adapted lip-sync for the hearing impaired.
• Games for kids.
• Short animations.

Human ergonomists have tested the expressive effect of CharToon
faces [36], and found that the experimental subjects could recognise
as well as reconstruct emotions on different non-realistic faces like
the ones in Plate 3 just as good as on photos.

CharToon can be used to ‘put 2D expressions on 3D faces’. The
first such experiment [9] with avatars in VRML worlds has been en-
couraging.

The composite components of Face Editor have been designed
especially for producing facial features. However, Face Editor can
be used for other application domains where the deformation and
motion of vector-based objects is to be controlled directly, by more
or less independent parameters.

5 CONCLUSIONS AND FUTURE WORK

CharToon is a vector-based animation system, consisting of sepa-
rate programs to design 21/2D drawings with dynamic potentials,
make animations and play those. The major advantages are dedicat-
ed support to make animated faces quickly, high speed in rendering
allowing real-time animation also on the Web, ease of use and plat-
form-independency. CharToon supports a great variety of non-pho-
torealistic effects both in the look and the movement of the faces.

CharToon has been tested by different users, including artists
who had hardly any experience with computers before. After hav-
ing understood the principles behind CharToon, they could produce
nice designs of faces, including the dynamical capabilities, in a cou-
ple of hours. Artists seem to like the ease with which one can trans-
form faces and animations.

Currently we are improving CharToon in two respects. In order
gain (more) drawing speed and additional rendering facilities, w
are building an extension of Face Editor (and Face Player) using
‘Magician’ OpenGL Java Interface, and replace Java AWT draw
ing primitives by OpenGL ones. We expect (based on experime
in comparable situations) greatly increased drawing-speed. F
thermore, we will get an opportunity to provide support in Cha
Toon for more sophisticated rendering options like line-styles a
texture.

In order to lift the animation editing task to a higher, conceptu
level, an experimental new version is being implemented, using
terval constraints. We expect that with the new version animatio
can be produced faster and easier, and the new facilities will insp
animators when inventing non-realistic facial motions.

CharToon in its present form provides the option for the user
build his own library of composite components. A big and system
atic repertoire of facial features like eye-brows, eyes, mouths h
been developed, each with a repertoire of expressions. The u
once he knows what and how subtle expressions the face has t
able to present, can design it by selecting and editing the spec
components. It is an interesting question if certain ‘design recipe
could be given how to ‘mix and match’ repertoire elements, bo
with respect to the intended expressiveness and rendering of
face to be produced.

An even more challenging issue is to investigate how anim
tions designed for a face with ‘standard’ components (e.g. on
which confirm to the MPEG4 standard [22] and thus can be driv
by performer data) can be re-used for faces with more or less
phisticated building blocks. We hope to come up with a set of ma
ping functions for many of the building blocks, which tell how an
animation for the ‘standard’ component should drive the motion
the component in question. In this way not only a non-photoreal
tic face could be designed quickly, but could be animated quick
by mapping existing animations to the components of the fac
Such a mapped animation could be sufficient for certain applic
tions, but for artistic or subtle effects it could be processed furth
in Animation Editor.

Acknowledgment

We thank A. Lelièvre, Zs. Paál, B. Kiers, J. Hendrix and K. Thóris
son for making some of the demos shown as examples, for
Savoney and J. Hendrix for turning captured date into animatio
and for the FASE group at TUD for providing captured data. We a
indebted to Chris Thórisson for his ToonFace system [34] which i
spired us to develop our system, and for his many useful sugg
tions on earlier versions of CharToon. Finally, we thank Paul te
Hagen for his useful remarks on this paper and throughout t
project. The final version of the paper reflects several suggestio
of the referees. The work has been carried out as part of the ongo
FASE project, sponsored by STW under nr. CWI 66.4088.

References

[1] Ansel, K. (1999) The making of the painted world: ‘Wha
dreams may come’, Proc. of Abstracts and Application
Siggraph’99, 204.

[2] Brennan, S. (1985) Caricature Generator: The dynamic e
aggerationoffacesbycomputer,LEONARDO,18(3),170-17

[3] Bruderlin, A., Williams, L. (1995) Motion signal process-
ing, Motion warping, Proc. of Siggraph’'95, 97-104.

[4] Charette, P., Sagar, M. (1999) The Jester, Film from th
Electronic Theater at Siggraph’99, Pacific Title Mirage
Studio, URL: http://www.pactitle.com/

[5] CharToon Home Page, (1999) http://www.cwi.nl/Char
Toon

d

is
cal
li-

d
-

c.

he
)

-

,
2.
[6] Curtis, C. (1998) Loose and sketchy animation. Proc. of
Abstracts and Applications Siggraph’98, 317.

[7] Daniels, E. (1999) Deep canvas in Disney’s Tarzan, Proc.
of Abstracts and Applications Siggraph’99, 200

[8] Ekman, P., Friesen, W. (1978) Facial Action Coding Sys-
tem. Consulting Psychology Press Inc. Palo Alto, Califor-
nia

[9] Elians, A., Van Ballegooij, A. (2000) Avatars in VRML
worlds with expressions, http://blaxxun.cwi.nl:4499/
VRML_Experiments/FASE/

[10] Essa, I. (1994) Analysis, Interpretation, and Synthesis of
Facial Expressions. PhD thesis, MIT Medial Laboratory,
available as MIT Media Lab Perceptual Computing
Techreport #272 from http://www-white.media.mit.edu/
vismod/

[11] Essa, I., Basu, S., Darrel, T, Pentland, A. (1996) Modeling,
tracking and interactive animation of faces and heads using
input from video, Proc. of Computer Animation'96:68-79.

[12] FaceWorks (1998) DIGITAL FaceWorks Animation Crea-
tion Guide, Digital

[13] FAMOUS Home Page (1989) http://www.famoust-
ech.com/

[14] FASE Project Home Page (1998) http://www.cwi.nl/
FASE/Project/

[15] Fekete, J. D., Bizouarn, E., Cournaire, E., Galas, T.,
Taillefer, F. (1995) TicTacToon: A paperless system for
professional 2D animation, Proc. of Siggraph’95, 79-90.

[16] Gainey, D. (1999) Fishing, shown at Electronic Theater of
Siggraph’99.

[17] Gleicher, M., Litwinowicz, P. (1996) Constraint-based
motion adaptation, Apple TR 96-153.

[18] Green. S. (1999) Non-photorealistic rendering, Sig-
graph’99 course 17.

[19] Griffin, P., Noot, H. (1993) The FERSA project for lip-sync
animation, Proc. of IMAGE’COM 93, 111-120.

[20] Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.
(1998) Making faces, Proc. of Siggraph’98, pp. 55-66

[21] Hodgins, J., Wooten, W. L., Borgan, D. C., O'Brien, J. F.
(1995) Animating human athletics, Proc. of Siggraph’95,
71-78.

[22] Information Technology – Generic coding of audio-visual
objects – Ppart 2: visual, ISO/IEC 14496-2 Final Draft In-
ternational Standard, Atlantic City, 1998.

[23] Kokkevis, E., Metaxas, D., Badler, N. (1996) User-control-
led physics-based animation for articulated figures, Proc.
of Computer Animation'96, 16-25.

[24] Litwinowicz, P.C. (1991). Inkwell: a 2/1/2-D animation
system, Computer Graphics, Vol. 25. No. 4. 113-122.

[25] Litwinowicz, P. (1997) Processing images and video for an
impressionist effect. Proc. of Siggraph’97, 407-414.

[26] Lost Marble (1999) Moho, http://www.lostmarble.com/
aboutmoho.html

[27] Owen, M., Willis, P. (1994) Modelling and interpolating
cartoon characters, Proc. of Computer Animation '94, 148-
155.

[28] Parke,F., Waters, K. (1996) Computer Facial Animation,
A. K. Peters.

[29] Ruttkay, Zs. (1999) Constraint-based facial animation,
CWI Report INS R9907, 1999. Also available from ftp://
ftp.cwi.nl/pub/CWIreports/INS/INS-R9907.ps.Z.

[30] Salesin, D., Kurlander, D. Skelly, T. (1996) Comic Chat,
Proc. of Siggraph’96, 225-236.

[31] SVG (1999) http://www.w3.org/1999/07/30/WD-SVG-
19990730/

[32] Takacs, B. (1999) Digital cloning system, Abstracts an
Applications Proc of Siggraph’99. 188.

[33] Terzopoulos, D., Waters, K.(1993). Analysis and synthes
of facial image sequences using physical and anatomi
models, IEEE Trans. Pattern Analysis and Machine Intel
gence, 15(6):569-579, June 1993.

[34] Thórisson, K. (1996) ToonFace: A system for creating an
animating interactive cartoon faces, M.I.T. Media Labora
tory Technical Report, 96-01

[35] Van Reeth, F. (1996) Integrating 21/2-D computer anima-
tion techniques for supporting traditional animation, Pro
of Computer Animation'96, 118-125

[36] Van Veen, H., Smeele, P., Werkhoven, P.: Report on t
MCCW (Mediated Communication in Collaborative Work
Project of the Telematica Institute, TNO, January 2000.

[37] Walker, J., Sproull, L., Subramani, R. (1994) Using a hu
man face in an interface, Proc. of CHI’94, 85-91.

[38] Williams, L.(1990) Performance-driven facial animation
Proc. of Siggraph'90, Computer Graphics 24(3), 235-24

[39] Witkin, A., Popovic, Z. (1995) Motion warping, Proc. of
Siggraph’95, 105-108.

	Animated CharToon Faces
	Zsófia Ruttkay Han Noot
	Zsofia.Ruttkay@cwi.nl, Han.Noot@cwi.nl
	Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

