
Centrum voor Wiskunde en Informatica

CharToon 2.1 extensions; Expression repertoire and lip sync

Zs.M. Ruttkay, A.D.F. Leliére

Information Systems (INS)

INS-R0016 July 31, 2000

Report INS-R0016
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

1

CharToon 2.1 Extensions

Expression Repertoire and Lip Sync

Zsófia Ruttkay, Alban Lelièvre
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Email: zsofia.ruttkay@cwi.nl

ABSTRACT

CharToon is a modular system to design and animate 21/2D faces and other graphical objects. This
report contains the extensions made for version 2.1, effecting only the Animation Editor module. The
new features allow the re-usage of a repertoire of expression snapshots and animations and
automatic generation of lip-sync from phoneme and/or viseme sequences.

1998 ACM Computing Classification System: D.2.2, H.5.1, H.5.2, I.3.8, J.5.

Keywords and Phrases: animation, lip-sync, graphical user interface.

Note: CharToon was designed and implemented under the project INS3.4 ‘Facial Animation’.
CharToon is proprietary software of Stichting Mathematisch Centrum and is protected by international
copyright laws. An on-line version of this report with colour figures is available from ftp://ftp.cwi.nl/pub/
CWIreports/INS/INS-R0016.ps.Z. More on-line material, including movies is available from http://
www.cwi.nl/CharToon.

2

1. Introduction

CharToon is a modular system to design and animate 21/2D faces and other graphical objects. The three
modules of CharToon,Face Editor, Animation Editor andFace Playerare meant, respectively, to design
faces, to make animations for them, and to play the animations. The architecture of the system, its usage as
well as the functionalities of the individual modules are discussed in the manual of the released version 2.0
[5]. We will use in this document concepts and terminology introduced there.

In this document we explain the new facilities in version 2.1. All the new features are of Animation Editor,
which make it possible to re-use a repertoire of expressions and animations, and to generate lip sync auto-
matically from a sequence of visemes. We also document a couple of new possibilities to view parameters.

In order to be able to produce a viseme sequence from a phoneme sequence, we provided some auxiliary
programs, originally developed to map the Dutch phoneme sequences we received from the IPO institute
[2]. However, by editing the content of some files, these programs can be used for mapping to other viseme
sets, and can be adapted to mapping different phoneme sets and sequences.

3

2. Re-using expressions and animations

2.1. Reanimate at a given time

In CharToon 2.0 theReanimatefunction of Animation Editor, to be activated by the menuFile/Reani-
mate , makes it possible to re-use pieces of animations made for a face with a different profile. The reani-
mation may happen by looking for matching IDs or matching labels in the current profile and the profile of
the animation to be re-used (see [5] Chapter 6.3.3 for details). However, when usingReanimate, the current
animation is first erased, and then the content of the ‘imported’ animation is loaded. Hence, in CharToon 2.0
there is no possibility for incremental usage of pieces of animations, either in time for the same channels or
for complementary set of channels.

This situation is improved in CharToon 2.1 by theReanimate at timefunction, to be activated in Animation
Editor by the menuFile/Reanimate at time . The basic mechanism is the same as ofReanimate,
namely an ‘.all’ complete animation is loaded to the current one. However, only those APs of the current
animation are effected for which a matching AP has been found from the loaded animation. The insertion
takes place at the time marker, if it has been set, otherwise at time 0. Only a time interval starting at the
insertion time is effected. Namely, if the insertion has to take place at time t and an AP of the animation to
be inserted is of length d, then in the corresponding channel of the current animation only KPs between t
and t+d get replaced (see Figure 1).

Figure 1. The effect of ‘Reanimate at time’: the animation before and after. Note that only the KPs in the
first two APs have been replaced, after 2000 ms till 4000 and 3000 ms, respectively.

4

TheReanimate at timefunction is handy to insert pieces of animation at increasing time moments, as well
as to superimpose animations effecting different part of the face. E.g. blinks can be added later to an anima-
tion which had nothing defined for the eyelids

2.2. Using the expression repertoire

TheReanimate at timefunction, as explained above, makes it possible to re-use pieces of animations. In
principle, one can always do reanimation ‘by ID’ or ‘by label’. However, the user has to think ahead to con-
sistently label the control points in order to be able to exploit later the reanimate by label possibility. More-
over, even if e.g. two faces, Face1 and Face2, have control points with pair-wise identical labels, it is not
assured that a smile made for Face1 will have a similar effect on Face2. It requires careful design of both the
faces and the expression to be able to reproduce a similar expression on a face by reanimating an expression
made for another face.

The concept ofrepertoire [7] has been coined for re-usable elements in CharToon, both concerning facial
features and animations. By using a facial feature and an animation repertoire, it is possible to re-use the
animations from the repertoire in such a way that the semantics of the animations is also preserved. In other
words, when reanimating a smile from the animation repertoire (made originally for a special face), the
result will be again a smile on the current face, assuming that the current face was built up from facial reper-
toire elements. As hinted to above, the visible result of reanimation depends on the design of the two faces
as well as on the design of the animation. Hence it is quite a challenge to compile a set of facial features —
eyes, mouths, eyebrows, cheeks, etc. — of different complexity which lend themselves for re-using not only
these components when building faces, but also re-using animations made for one of the components.

The facial feature components form thefacial repertoire. There is a mouth repertoire, an eyes repertoire,
etc., with a special, so-calledreferencedesign for each features. In each class, there are corresponding con-
trol points with identical labels. Simpler elements contain only a subset of the control points of the reference
element.

For the face made of the reference facial features, an animation is made for different expressions, including
the 6 basic expressions. Ananimation repertoire may contain snapshots (e.g. a surprised face) as well as
time-dependent animations of expressions (a face turning from neutral to surprised and to neutral again).
The animation repertoire files are .all files, to be found in theCompleteAnimations directory, contain-
ing information on the profile in addition to the animation.

Because of the consistent labelling of the control points, the animation repertoire can be used for any face
made of facial feature repertoire elements. Moreover, as a result of careful design, it is also guaranteed that
the re-used animations, originally made for the reference face, will have the same effect on other faces, see
Figure 2. The full description of the provided repertoire elements and design recipes for their usage are dis-
cussed in [3]. The animation repertoire provided with CharToon 2.1 are all snapshots of variants of the 6
basic expressions and of some others, made for theGeneric face. The files, all in subdirectories ofCom-
pleteAnimations/Repertoire , are listed in Appendix I. This repertoire can be extended or replaced
by the user. (Remember that an animation repertoire may contain time-dependent animations too, not only
snapshots.) Here we outline only how to make animations by using the (an) animation repertoire.

The CompleteAnimations/RepertoireSamples.all file contains an animation made by using
most of the expressions in theRepertoire . This animation can be used byReanimate to see how the
expressions look like on a face (newly) made from facial repertoire elements.

It is possible to insert snapshots of expressions at given time moments, similar to key-framing. Automati-
cally Animation Editor will provide linear interpolation between the KPs of the inserted snapshots. The user
is free to refine the transition between the expressions, by inserting KPs. It is also possible to adjust the
inserted expressions. The other possibility is to insert animations, e.g. a smile. Besides inserting expressions
at different times, it is also useful to compile an animation by using repertoires for parts of the face. E.g. for
a talking head, the eyebrow and eye expressions can be superimposed over the animation of the mouth. As
of manipulating inserted animations, the same things apply as for snapshots.

5

Sadness/Burial_Face Surprise/Astonishing_Surprise Smile/Absolute_Joy

Figure 2. Three expression from the animation repertoire, shown on three faces:SimpleHead , Medium-
Head andGeneric . The faces were made up from (unmodified) elements of the facial repertoire.

6

2.3. Zoom in/out all

A new facility in CharToon 2.1 is to zoom in/out (see Chapter 6.4.1 in [5] for zooming) for all shown APs,
resulting in increasing/decreasing the zoom status of each APs, by the following new menu items:

Show AP/Zoom in all zoom in for all shown APs,

Show AP/Zoom out all zoom out for all shown APs.

If all the APs had identical (e.g. ‘overview’) view, then by doing parallel zoom in/out the resulting views
will be also identical for all APs. However, if the initial views were different, the difference will be pre-
served, unless an extreme view is reached.

7

3. Lip sync

3.1. Defining visemes

A talking head is a head with a mouth animated in such a way that the mouth movement corresponds to the
audio spoken (or sung) by the head. In principle it was possible already in CharToon 2.0 to generate anima-
tion for the mouth by hand, frame by frame, defining in Animation Editor what mouth shape has to be
shown at certain time moments. However, such a process is impossible in practice, partly because of the
tedious work needed to make each mouth shape one by one, partly because of the ad-hoc hacking assumed
to produce the individual mouth shapes. A general approach to overcome these difficulties is to use a given
set of mouth shapes — the so-called visemes —, and to produce the animation for the mouth as a sequence
of visemes from the predefined set. The issue of deciding the sequence and timing of the visemes according
to audio is a research topic in itself. Without bothering about the related issues, here we assume that:

• the set of mouth shapes (visemes) to be used is agreed upon;

• the time sequence of the requested visemes is know, and given in the form of an ascii input file (see 3.2).

What remains for the user of Animation Editor is:

• to design the set of visemes to be used as mouth snapshots;

• to make an animation of the mouth according to the given viseme sequence.

A viseme is a snapshot of the mouth. It depends on the intended usage of the talking head, how many
visemes should be used and how detailed they should be. E.g. if a news-reader head is to be looked at by
hearing impaired people too, then very well articulated and refined mouth shapes (with tongue and teeth vis-
ible sometimes) are to be produced. Hence the head has to have a mouth which is capable of producing
detailed deformations, and a big number (40-60) of visemes have to be provided as ready-made units for lip
sync. On the other hand, if one would only like to give the impression of mouth movements during speech,
a few (6-8) mouth shapes may be sufficient. The mouth can be simple, cartoonish, just having enough con-
trol possibilities to ‘make’ the low number of mouth shapes. There are different recommended viseme sets
available for different languages. However, there is no single set accepted for English [1, 3, 8]. One should
always have the possibility to design a new set too, for special purposes (e.g. singing).

Once the set of visemes to be used is agreed upon, the animator has to make with Animation Editor a corre-
sponding mouth shape for each viseme, and save it as a complete .all animation (see [5] Chapter 6.3.1 for
details) into theviseme definition filefor the viseme. In practice, a viseme will be a snapshot, an animation
with a single KP for each parameter for the mouth. (Some mouth parameters may take their neutral value,
but these have to be given also explicitly.)

A viseme which was designed for a given mouth (head) will not, in general, work for other mouths. In prin-
ciple one has to design each viseme of the viseme set for every different mouth. Note, however, that the pre-
defined mouth repertoire had been provided in such way that a single viseme set can be re-used for all the
provided mouth designs. (The issue is discussed in detail in [7].) However, the effect may not be perfect.

In this document we will use the ‘ExtendedEnglish’ viseme setfor English, consisting of 47 visemes. The
visemes were developed at CWI, based on visual clues from [8]. The corresponding files are provided with
CharToon 2.1, and are in theVisemes/Neutral subdirectory. The file names and the corresponding
mouth shapes are given in Appendix II. There are 6 other viseme sets available too, each of them is a variant
of the original one, corresponding to mouth shapes of visemes while one of the 6 basic expressions is shown
on the face (effecting also the mouth sometimes), see Figure 3 and 4. These variants are to be found in the
Visemes/Sad , ... etc. subdirectories. These viseme sets were designed for theGenMouth reference
mouth, but in such a way that they can be used with any of the mouth facial repertoire elements, to be found
in the UserDefinedComposite/Mouths directory (see Figure 4 and 5). To experiment with viseme
sequences, it is useful to take theVisememouth2 mouth, which is an enlarged version of the reference
mouth.

8

Figure 3. The variants of theC_CHurch viseme with different expressions:C_CHurch_Smile and
C_CHurch_Sad . The mouth isGenMouth . .

Figure 4. TheC_CHurch viseme shown on the referenceGenMouth and on the simplerMouth2 .

Figure 5. TheC_CHurch viseme on profile and quart view variants ofGenMouth .

3.2. The viseme profile and the viseme sequence files

If one wants to generate a mouth animation automatically, based on some viseme sequence, three kinds of
input files are needed:

a viseme profile file, an ASCII file with ‘.avprof’ extension, listing the VID and the viseme definition
file for the individual visemes to be used;

theviseme definition files, ASCII files with ‘.all’ extension, containing the definition of the individual
visemes (the file names all must be listed in the viseme profile file);

aviseme sequence file, an ASCII file with ‘.avseq’ extension, containing a time sequence of visemes;

9

A viseme profile fileis an ascii file (see Figure 6), to be produced by a text editor. The first non-comment
line must be a positive integer, telling the number of visemes to be used. Then for each viseme an integer
VID and a filename (pathname relative to theVisemes directory) is provided in separate lines. The file-
name is an “.all” file, containing a snapshot (the corresponding mouth shape), which had been designed ear-
lier (see previous chapter). The file name should be chosen carefully and in a systematic way, giving an idea
about the viseme it describes.

// Comments
// Viseme set for English
// The profile the visemes are designed for
// visememouth2 (mouth) profile, also in Generic head
// Nof visemes
47
// VID filename
1 Neutral/A_cAr.all
2 Neutral/A_mAp.all
3 Neutral/A_bAIt.all
4 Neutral/B_Boy.all
5 Neutral/C_CHurch.all
6 Neutral/D_Day.all
7 Neutral/E_bEAt.all
8 Neutral/E_bEd.all
...

Figure 6. Beginning of theExtendedEnglish.avprof viseme definition file.

A viseme sequence fileis an ascii file (see Figure 7), to be produced by some software outside of CharToon
(see Chapter 4 for such a sw for a special case). This is the file containing the actual input, the sequence of
visemes to be turned into an animation of the mouth in Animation Editor. Each line contains a time in milli-
seconds (integer, multiple of 100) and an VID (positive integer). The VID is meant to be an VID listed in the
viseme profile file being used.

// Comments
// The viseme set to be assumed
// Time VID
0 47
100 1
200 17
300 24
400 47
500 19
600 1
700 20
800 13
900 19
1000 47
1100 43
1200 24
1300 24
1400 35
...

Figure 7. Beginning of theSampleSequence.avis viseme sequence file.

10

All the input files are to be put in theVisemes subdirectory. It is possible to use subdirectories of
Visemes , then the relative path has to be given in the visemes profile file. This is recommended if different
viseme profile file and viseme definition files are around.

3.3. Generating lip sync

One generates lip sync by using the new menus inFile/Viseme . The menus offer file selection dialogs to
choose the file to be loaded. First one has to load the viseme profile file to be used:

File/Viseme/Load viseme profile load a viseme profile file.

There is no visible result of loading a viseme profile file. What happens, though, is that the files listed in the
viseme profile file are opened, and the visemes as snapshots are read into memory, for further usage. These
visemes will be identified and referred to later by their VIDs.

If an error is encountered when reading in a viseme profile file or processing a file referred to by it, the error
is reported.

If a viseme profile has been loaded with success, one may load a viseme sequence file:

File/Viseme/Load viseme sequence load a viseme sequence file,

As default, the viseme sequence is inserted at the beginning (time 0), and the rest of the effected channels is
cleaned. If one wants to insert a viseme sequence at a given time, the time marker has to be set (see 6.6.2 of
the manual for details). The time marker can be (re)set by the mouse in the ruler region

Mouse Press + ALT set time marker,
(=MouseMiddle)

Mouse Press + ALT +SHIFT remove time marker, if there was one at the time of mouse press.
(=MouseMiddle + SHIFT)

It is important to remember that the original content ‘after the inserted visemes’ will be erased. Hence one
has to work from left to right when inserting different viseme sequences.

Note that the visemes in the .all files (referred to by the viseme profile file) are supposed to be made for
(mouth) parameters which are present in the current profile. In other words, you must be working with the
face which has the mouth parameters in the profile identical to the mouth parameters used to define the indi-
vidual visemes. If this is not the case, some mouth labels will be reported as ‘not found’. (Actually when
inserting a viseme, a ‘reanimate by label’ action takes place, see [5] or details.) This is not a fatal error, but
an indication that you are working with mismatching profile and viseme profile, a situation you should nor-
mally avoid. However, when working with a mouth from the provided mouth repertoire, the visemes do pro-
duce proper mouth shapes even if some of the APs (control points with proper labels) are not provided for
the current mouth.

Once a viseme sequence has been loaded, it is allowed to fine-tune the resulting animation by hand editing.
It is possible and advised to save intermediate work as ordinary animation. which can be used further as any
other animation (loaded, edited, turned into movie,...)

Besides generating lip sync automatically, it is possible to load individual visemes at given times, by using
the File/Reanimate at time function. (Note that the visemes are not in theCompleteAnima-
tions subdirectory, which you get when calling theFile/Reanimate at time menu, but in the
Visemes subdirectory.)

3.4. Possible further extensions

The lip sync facilities are meant to support first experiments with talking heads. Depending on further needs
and eventual auxiliary software to be used for audio to viseme, phoneme to viseme or text to speech (to
viseme) generation, different extensions and refinements could be made.

The major bottleneck of the current facilities for lip sync is that in the viseme sequence file the time of
visemes must be multiple of 100 milliseconds. This is required because ofthe (fixed) time granularity of
Animation Editor is 100 ms. If it turns out that this granularity is too rough to produce good-enough quality

11

lip sync, Animation Editor will be improved in such a way that the time granularity can be set to smaller
steps.

Another useful feature would be to get some hints about the visemes read in from a viseme sequence file. It
would be possible to extend AnimationEditor with avisemes channel, where symbols corresponding to the
read-in visemes would be shown, or even edited by the user.

Finally, Face Player, when called from Animation Editor, does not play audio. This could be easily changed
in the future, allowingto watch and listen to a talking headfrom Animation Editor.

12

4. Tools to map a phoneme sequence to a viseme sequence

In this chapter we explain how to use the auxiliary software tools (all written in Java 1.1), which were devel-
oped to be able to generate viseme sequences from phoneme sequences for Dutch language, according to
the practice and expertise of IPO [2].

In the first stage of experiments, we ignored much information on coarticulation, present in the input pho-
neme sequence. As we had developed a viseme set meant for the English language, we also had to provide a
tool to ‘approximate’ some typical Dutch phonemes by the English phonemes and corresponding visemes.

Three programs are to be used one after the other, each taking a single ASCII input file and producing an
ASCII output file with the same name but a new extension. The format of the files can be derived from Fig-
ure 8. The process consists of the following steps.

1. TheProcPhonemesprogram takes a.aoph original phoneme sequence file(provided by IPO) and pro-
duces the.apph processed phonemes file. This program changes the original sequence in two respects:

• only a limited set of phonemes will be included in the output:

- DIPHs, providing information on co-articulation between phonemes in the input are skipped;

- for special phonemes ("Ei", "9y", "ai", "ui", "iu", "yu", "eu", "Ai", "Oi", "E:", "9y”) also a second
part dummy phoneme is generated ("Ei2", "9y2", "ai2", "ui2", "iu2", "yu2", "eu2", "Ai2", "Oi2",
"E:2", "9y2"). The symbols used for the phonemes are according to the practice of IPO. Appendix
VI gives some idea about their meaning.

• for each phoneme a single time is assigned, instead of a start time t and a duration d, as is in the original
sequence. The time is:

t for plosives ("p", "t", "k", "b", "d", "g", "c", "tS", "dZ") and the first component of special
phonemes ("Ei", "9y", "ai", "ui", "iu", "yu", "eu", "Ai", "Oi", "E:", "9y");

t+0.75d for the second component of special phonemes;

t+0.5d for the rest

2. TheSamplePhonemestakes the processed phonemes file and samples it at 100 ms, producing the.asph
sampled phoneme sequence filewhich contains phonemes at multiples of 100 ms (not necessarily at
each discrete time, only for those where there was a phoneme prescribed close to the discrete time).

3. TheMapPhonemesprogram takes a sampled phoneme sequence file and maps the phonemes to visemes,
producing the .avis viseme sequence file.MapPhonemes takes the necessary mapping information from
the predefinedvisemetable filewhich defines the one to one correspondence of phonemes to visemes.
This file namedvisemetable should be available in the same directory where the program file is. The
initial content of the file, used for the mapping of Dutch phonemes to visemes of the ExtendedEnglish
viseme set, is given in Appendix VI. The file should be re-written with a file defining the intended map-
ping of visemes.

Each tool should be invoked as

java ToolName FileName

TheFileName should be given without extension, and it is looked for in thePhonemeSequences sub-
directory. The program looks for the given file (always in thePhonemeSequences subdirectory) with the
required extension, and produces an output file with FileName but the new extension. See Figure 8 for a
sample sequence of produced files.

The final output, an .avis viseme sequence file can be loaded to Animation Editor and will be turned into an
animation of the mouth automatically, as explained in Chapter 3.3.

13

DefPhonSeq.aoph

//time duration phon/diph symbol for phoneme/diph
0.00000 0.02000 PHON .
0.00000 0.02937 DIPH .1?1
0.02000 0.01500 PHON ui
0.02937 0.04075 DIPH ?1I1
0.03500 0.06531 PHON Ei
0.07012 0.04018 DIPH I1k1
0.10031 0.06000 PHON k
0.11031 0.09043 DIPH k1b1
0.16031 0.05043 PHON yu
0.20075 0.04068 DIPH b1E1
0.21075 0.06656 PHON E
0.24143 0.07706 DIPH E1n1
0.27731 0.06700 PHON n
0.31850 0.04656 DIPH n1@1
0.34431 0.05187 PHON @
0.36506 0.05193 DIPH @1n1
0.39618 0.05212 PHON n
0.41700 0.08275 DIPH n1s1
0.44831 0.08643 PHON s

DefPhonSeq.apph
10 .
20 ui
31 ui2
35 Ei
83 Ei2
100 k
160 yu
198 yu2
244 E
310 n
370 @
422 n
491 s

DefPhonSeq.asph
0 .
100 k
200 yu2
300 n
400 n
500 s

DefPhonSeq.avis
0 47
100 15
200 44
300 22
400 22
500 35

Figure 8. TheDefPhonSeq.aoph input file and the corresponding output files generated by the pho-
neme sequence processing programs.

14

One can experiment with different viseme sets, as well as different mappings of phonemes to visemes. For
the first, one has to design new viseme sets, either by modifying visemes in a given set, or from scratch. For
the latter, one has to make a new visemetable file. One can experiment with ‘many to one’ mappings to see
what happens if only a subset of a larger viseme set is used, or a viseme set (e.g. MPEG4) with a small num-
ber of visemes is used. The correspondence of different visemes, given in Appendix V, may be helpful for
such experiments.

Acknowledgement

CharToon has been developed at CWI, in the framework of the FASE project, sponsored by STW under nr.
CWI 166 4088.

We thank Jeroen Hendrix for making the English-Dutch viseme mapping table, Paul ten Hagen and Han
Noot for several discussions on the topic and for comments on this report.

15

Appendix I
The animation repertoire: .all files in subdirectories of CompleteAnimations/Repertoire
Anger/

Be_Careful_What_You_Say.all
Teased_Pested.all
Furious.all
Annoyed.all
Reproach.all
Rage_Hate.all
Deceived_BadMood.all
Sulk.all

Disgust/
Disgust_Amused.all
Disgust_Mockery.all
Disgust.all
Revulsed.all
Disgust_Moderate.all
Violent_Disgust.all

Fear/
I'm_Going_To_Be_Late.all
I'll_Never_Do_It_Again.all
Don't_Do_That.all
Terror.all
Fear_Waiting.all
Fear.all

Sadness/
Regrets.all
Deceived.all
What_a_Disaster.all
Remembering_Souvenir.all
Burial_Face.all
Pitiness.all
Sadness.all

Smile/
Are_You_Joking.all
Smiling_For_The_Camera.all
Hey_Look_At_That.all
Nasty_Idea.all
How_Cute.all
Adoration.all
Derision_Smile.all
Joy_Madness.all
Absolute_Joy.all
Pleased.all
Smile.all

Surprise/
Astonishig_Surprise.all
Surprise_Slightly_Disgusted.all
Surprise_Bad.all
Surprise_Good.all
Surprise.all

Others/
Crying_Of_Joy.all
Please_Help_Me.all
Exhausted_Trying_To_Explain.all
Bored.all
Neutral.all
Opportunity_To _Revenge.all
Where_Is_The_Coffee.all
Impressed.all
Are_You_sure.all
Incredulity_Contempt.all
Attention_Concentration.all
Do_Not_Know.all
Not_Sure.all
Listening_to_Nonsense.all
Lightly_Sarcastic.all
Smack.all
Doubt_suspicion.all

16

Appendix II:
The ExtendedEnglish viseme set for neutral expressions, shown on the GenMouth mouth

0_Closed A_cAr A_mAp A_bAIt

B_Boy C_CHurch D_Day E_bEAt

E_bEd F_Fine G_glottalstop G_Got

H_Head I_bIt J_Jungle K_Can

L_Lovable L_Let M_bottoM M_My

17

N_siNg N_buttoN N_No O_abOUt

O_bOUght O_shOW O_bOy O_yOU

O_dOWn P_Pan R_Ride R_butteR

R_tuRn S_SHine S_viSion S_Sin

T_THat T_THin T_Tan U_bUt

18

U_bUy U_bOOk U_bOOt V_Vine

W_Wit Y_Yellow Z_Zone

19

Appendix III

The DECtalk viseme set from [8]

DECtalk viseme # DECtalk viseme

0 SI_0_Silence 30 LX_30_pvocL

1 IY_1_bEAt 31 M_31_Met

2 IH_2_bIt 32 N_32_Net

3 EY_3_bAIt 33 NX_33_Sing

4 EH_4_bEt 34 EL_34_bottLe

5 AE_5_bAt 35 D_35_Debt

6 AA_6_pOt 36 EN_36_buttoN

7 AY_7_bUy 37 F_37_Fin

8 AW_8_dOWn 38 V_38_Vet

9 AH_9_bUt 39 TH_39_THin

10 AO_10_bOUt 40 DH_40_THis

11 OW_11_bOAt 41 S_41_Sit

12 OY_12_bOy 42 Z_42_Zoo

13 UH_13_bOOk 43 SH_43_SHin

14 UW_14_lUte 44 ZH_44_meaSUre

15 RR_15_bIRd 45 P_45_Pet

16 YU_16_cUte 46 B_46_Bet

17 AX_17_About 47 T_47

18 IX_18_kisseS 48 D_48_Debt

19 IR_19_killERd 49 K_49_Kit

20 ER_20_bIRd 50 G_50_Get

21 AR_21_buttER 51 DX_51_baTTer

22 OR_22_calOR 52 TX_52_laTin

23 UR_23_chURn 53 Q_53_glstop

24 W_24_Wet 54 CH_54_CHurch

25 Y_25_Yet 55 JH_55_Judge

26 R_26_Red

27 LL_27_Let

28 HX_28_Head

29 RX_29_pvocR

20

Appendix IV
The MPEG4 viseme set based on [3]

MPEG4 viseme example

0 none

1 P_B_M Put, Bed, Mill

2 F_V Far, Voice

3 Th_Dh THis, THat

4 T_D Tip, Doll

5 K_G Call, Gas

6 tS_dZ_S CHair, Join, SHe

7 S_Z Sir, Zeal

8 N_L Lot, Not

9 R Red

10 A: cAr

11 E bEd

12 I tIp

13 O tOp

14 U bOOk

21

Appendix V
Correspondence of the ExtendedEnglish viseme set to DECtalk and MPEG4.For DECtalk, the corre-
spondence indicates identical mouth shapes. For MPEG4, the many to one mapping is based on simi-
lar mouth shapes (MPEG4 ones approximating the ExtendeEnglsih ones).

ExtendeEnglish DECtalk MPEG4

0 0_Closed 0 0

1 A_cAr 10
2 A_mAp 10
3 A_bAIt 10
4 B_Boy 46 1
5 C_CHurch 54 6
6 D_Day 35 4
7 E_bEAt 1 11
8 E_bEd 4 11
9 F_Fine 37 2
10 G_glottalstop 53 -
11 G_Got 50 5
12 H_Head 28 -
13 I_bIt 2 12
14 J_Jungle 55 6
15 K_Can 49 5
16 L_Lovable 8
17 L_Let 8
18 M_bottoM 31 1
19 M_My 1
20 N_siNg 8
21 N_buttoN 8
22 N_No 32 8
23 O_abOUt 10
24 O_bOUght 10 13
25 O_shOW 13(?)
26 O_bOy 12 13(?)
27 O_yOU 14
28 O_dOWn 8 13
29 P_Pan 45 1
30 R_Ride 26 9
31 R_butteR 9
32 R_tuRn 23 9
33 S_SHine 43 6
34 S_viSion 6
35 S_Sin 41 6
36 T_THat 3
37 T_THin 47 3
38 T_Tan 4
39 U_bUt 9 13(?)
40 U_bUy 37 10(?)
41 U_bOOk 13 14
42 U_bOOt 14
43 V_Vine 38 2
44 W_Wit 24 2(?)
45 Y_Yellow 25 6(?)
46 Z_Zone 42 7

22

Appendix VI
Mapping of Dutch phonemes to the ExtendedEnglish viseme set (content of the defaultvisemeta-
ble file)
//phoneme VID corresponding file (for information only)
// phoneme symbols are according to the practice of IPO
// * in place of phonemes means that there is no Dutch phoneme corresponding to the given English viseme
A 1 //A_cAr.all
{ 2 //A_mAp.all
e 3 //A_bAIt.all
b 4 //B_Boy.all
tS 5 //C_CHurch.all
d 6 //D_Day.all
i 7 //E_bEAt.all
E 8 //E_bEd.all
f 9 //F_Fine.all
- 10 //G_glottalstop.all
g 11 //G_Got.all
h 12 //H_Head.all
I 13 //I_bIt.all
dZ 14 //J_Jungle.all
k 15 //K_Can.all
L 16 //L_Lovable.all
l 17 //L_Let.all
* 18 //M_bottoM.all
m 19 //M_My.all
N 20 //N_siNg.all
=n 21 //N_buttoN.all
n 22 //N_No.all
Au 23 //O_abOUt.all
O 24 //O_bOUght.all
* 25 //O_shOW.all
OI 26 //O_bOy.all
* 27 //O_yOU.all
AU 28 //O_dOWn.all
p 29 //P_Pan.all
* 30 //R_Ride.all
* 31 //R_butteR.all
9 32 //R_tuRn.all
S 33 //S_SHine.all
Z 34 //S_viSion..all
s 35 //S_Sin.all
D 36 //T_THat.all
T 37 //T_THin.all
t 38 //T_Tan.all
@ 39 //U_bUt.all
aI 40 //U_bUy.all
U 41 //U_bOOk.all
u 42 //U_bOOt.all
v 43 //V_Vine.all
* 44 //W_Wit.all
j 45 //Y_Yellow.all
z 46 //Z_Zone.all
. 47 //0_Closed.all
//
// substitutions1
// Some Dutch phonemes do not exist in English. However, an (English) viseme substitute is used.
y 32
a 39

23

e 8
o 24
2 32
Ei 3
//
// substitutions2
// The special phonemes are replaced by two substitutes, below the visemes corresponding to the 2 substitutes are listed.
9y 24
9y2 32
ai 39
ai2 7
oi 24
oi2 7
ui 42
ui2 7
iu 7
iu2 42
yu 32
yu2 44
eu 8
eu2 44
Ai 1
Ai2 7
Oi 24
Oi2 7
c 5
x 20
G 20
C 20
J 45
R 20
w 43
E: 8
E:2 45
9: 32
O: 24
{:" 8
// end

24

References

1. Ezzat, T., Poggio, T. (1998)
MikeTalk: A talking facial display based on morphing visemes. Proc. of Computer Animation’98, IEEE,
Los Almos.

2. IPO (2000)
Practice of coding phonemes of Dutch audio sequences at the IPO institute, personal communication.

3. ISO (1998)
Information Technology - Coding of Audio-Visual Objects: Visual, ISO/IEC 14496-2 Committee Draft,
Tokyo

4. Lelièvre, A. (2000)
CharToon Tutorial - Making an animated face from scratch or from the repertoire, Report INS-R00??,
CWI, Amsterdam, to appear

5. Noot, H., Ruttkay, Zs. (2000)
CharToon 2.0 Manual, Report INS-R0004, CWI, Amsterdam

6. Ten Hagen, P., Noot, H., Ruttkay, Zs. (1999)
CharToon: a system to animate 2D cartoon faces, Short Papers Proceedings of Eurographics’99

7. Ten Hagen, P. (2000)
A Facial Repertoire for Animation , Short Papers Proceedings of Eurographics’2000, to appear

8. Waters, K., Levergood, T. (1993)
DECface: An automatic lip-synchronization algorithm for synthetic faces, Technical Report CRL 93/4,
Digital, Cambridge.

