
Centrum voor Wiskunde en Informatica

CharToon 2.0 manual

H. Noot, Zs.M. Ruttkay

Information Systems (INS)

INS-R0004 January 31, 2000

Report INS-R0004
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

1

CharToon 2.0 Manual

Han Noot, Zsófia Ruttkay

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Email: {han.noot, zsofia.ruttkay}@cwi.nl

ABSTRACT

CharToon is a modular system to design and animate 21/2D faces and other graphical objects. This
manual describes the features of each module in version 2.0, with practical tips and sections for
sophisticated features marked in the margin. This arrangement allows the novice as well as the
advanced user to get introduced to using CharToon. A special extension to CharToon, the
EmotionDisc is also described, which allows easy visualization of the entire emotional repertoire of a
face made by CharToon. In the Appendices, samples of ascii data files, sample heads and animations
and color figures are given.

1991 ACM Computing Classification System: D.2.2, H.5.1, H.5.2, I.3.8, J.5.

Keywords and Phrases: animation, graphical user interface.

Note: CharToon as designed and implemented under the project INS3.4 ‘Facial Animation’. CharToon
is proprietary software of Stichting Mathematisch Centrum and is protected by international copyright
laws. An on-line version of this report (and possible later updates of it) is available from ftp://
ftp.cwi.nl/pub/CWIreports/INS/INS-R0004.ps.Z. More on-line material, including movies is
available from http://www.cwi.nl/CharToon.

2

Table of Contents

1. Overview 4
1.1. The components and data files of CharToon 4
1.2. Configuration of the software 6
1.3. Hardware/software requirements to run CharToon 6

2. Starting up CharToon 8
2.1. Integrated mode 8
2.2. Arranging windows of components 8
2.3. Setting the user level 8

3. Face Editor 10
3.1. The principle of creating faces with Face Editor 10
3.2. A simple exercise 11
3.3. Ways to start up Face Editor 12
3.4. On-line help 12
3.5. Components, drawing order and rank 13
3.6. Face Editor’s main menu 14

3.6.1 Opening and saving faces 14
3.6.2 Global drawing options 16
3.6.3 Global drawing operations 18
3.6.4 Test mode 18
3.6.5 Intermezzo: component selection 19
3.6.6 Operations on components 19

3.7. Components of drawings 21
3.7.1 Elements of components 21
3.7.2 Types of components 22
3.7.3 Basic components 26
3.7.4 Skeleton components 27
3.7.5 Predefined facial elements 27
3.7.6 User Defined Composite components 28

3.8. Component editing 29

4. Face Player 35
4.1. Using Face Player 35
4.2. Ways to start up Face Player 35

4.2.1 Integrated mode 35
4.2.2 Starting Face Player from Animation Editor 35
4.2.3 Starting Face Player from Emotion Disc 35
4.2.4 Stand alone mode 35

5. Emotion Disc 37
5.1. Principle and usage of the Emotion Disc 37
5.2. Running Emotion Disc 38

3

6. Animation Editor 39
6.1. Basics 39

6.1.1 The principle of defining animations 39
6.1.2 Starting up Animation Editor in stand alone mode 39
6.1.3 The Animation Editor window 40

6.2. Getting started to make an animation 41
6.2.1 Loading a profile 41
6.2.2 Seeing the animated face 41
6.2.3 Using the animation parameter staves 42
6.2.4 Creating a new animation 42

6.3. Saving and loading animations 43
6.3.1 Saving an animation 43
6.3.2 Loading an animation 43
6.3.3 Re-using earlier made animations by reanimate 43
6.3.4 Saving movie data 44

6.4. Changing the view, visibility and focus of APs 44
6.4.1 Views and zooming 44
6.4.2 Hide/show APs 45
6.4.3 Focusing and selecting 46

6.5. Editing an animation 46
6.5.1 Adding/deleting/moving KPs 47
6.5.2 Cut and paste within and among APs 47
6.5.3 Shifting and scaling selections 48

6.6. Using the time ruler 48
6.6.1 Ruler markers for playing and synchronization 48
6.6.2 Selecting APs in focus 49

6.7. Working with multiple animations 50
6.8. Using sound 50

6.8.1 Adding sound 50
6.8.2 Sound play instructions 50

6.9. Tuning Animation Editor 51
6.9.1 Automatic backup generation 51
6.9.2 Setting options 51

6.10. Overview of keyboard shortcuts in Animation Editor 53

7. Implementational issues 54
7.1. General considerations 54
7.2. Communication using ascii scripts 54
7.3. Face Editor and Face Player 54
7.4. Emotion Disc 55
7.5. Animation Editor 55
7.6. Known problems 55
7.7. Reporting bugs 55

Acknowledgments 55

1. Appendix: CharToon’s file-formats and directories 56
2. Appendix: List of example faces and animations 65
3. Appendix: Color plates 67

4

1. Overview

1.1. The components and data files of CharToon

CharToon is an interactive tool to be used to animate 21/2D cartoon faces and eventually other objects. Char-
Toon consists of three modules (see Figure 1):

• Face Editor is to be used to design faces with components which can be animated in terms of change of
shape, location, size and visibility.

• Animation Editor is to be used to produce animations, either from scratch or by post-processing existing
animations or data produced by facial tracking.

• Face Player is there to show the animated drawing.

Figure 1. Modules and essential data files of CharToon.

These basic modules provide information for each other by producing ascii files (see Figure 1). The differ-
ent essential data files reside in specific directories and are identified by specific extensions:

Faces

‘.dat’ ascii files defining (neutral) faces or other drawings,

output by/input for Face Editor and input for FacePlayer.

Profiles

‘.aprof’ ascii files, defining ‘face profiles’, that is the control parameters for a face,

output by Face Editor, input for Animation Editor.

Animations

‘.aanim’ ascii files defining animation data,

output by/input for Animation Editor, can be also produced outside of CharToon.

CompleteAnimations

‘.all’ ascii files defining face profiles and animation data,

output by/input for Animation Editor, can be also produced outside of CharToon.

camera

Recogniser
Animation Editor

Face Player

Face Editor

facial
actions

neutral
face

animated
face

components
library

animation
library animation

movie
script

USER

face
profile

5

Movies

‘.amov’ ascii files defining animation movies, that is data for each parameter per frame,

output by Animation Editor, input for Face Player.

‘.smov’ ascii files, defining sound arrangements per frame,

output by Animation Editor, input for Face Player.

Sounds

 ‘.au’ audio files (Sun audio file, mono, 8kb, u-law encoded), containing audio,

input for Face Player and is referred to by the‘.smov’ sound arrangement files.

 ‘.sprof’ ascii sound profile files, containing information on sound channels and markers,

input for Animation Editor, generated by text editor outside CharToon.

‘.osound’ Java object files, defining the arrangement to play channels,

output by/input for Animation Editor.

AnimDumps

‘.gif’ files, containing image dumps of individual movie frames,

output by Face Player, input for any software to play/make movie from image sequences.

For each of the above mentioned ascii files there is a sample in Appendix 1 with explanation of the syntax of
the content. Also Readme files are provided in the directories in which the files reside by default. More
about the function of these files, as well as other files needed for the separate components can be found in
the dedicated chapters.

!! Face Editor, Face Player and Animation Editor add file-extensions automatically, when the user has to type
in a file name. However, if an existing file is to be chosen (from a list by a file dialog), a complete file name
is expected as input.

ExternalImages

‘.gif’ image files produced by some sw (e.g. Photoshop) outside of CharToon, to be used as e.g. back-
ground, text balloons, etc.

input for Face Editor and Face Player.

In addition to the above files which are meant to store permanent data, there are auxiliary files to be used as
default at start-up, as temporary data communication files or as backup files.

Default files:

Profiles/DefaultProfile.aprof, read in automatically if no profile file is specified for Animation Editor,

Sounds/DefaultSoundProf.asprof, read in automatically if present,

ExternalImages/FASELogo.gif, used as default ExternalImage, must be present.

The first two files can be any syntactically correct ones, and should not be necessarily present.

Temporary files:

Profiles/uniqueidCurrent.aprof is used as the profile of the current face being edited in Face Editor (in
integrated mode),

Movies/uniqueidSelectionTest.amov is a special temporary file storing a movie of a selected part of the
current animation,

Movies/uniqueidSnapshot.amov is a special temporary file storing a single snapshot.

All the temporary file names start with uniqueid, which is an unique identifier of the session generated by
the system, in order to allow multi-user usage of the software. In general, the user has nothing to do with the

6

temporary files, which are removed after the user quits CharToon. However, for special advanced purposes
the user may want to copy/process some of these files.

!! When using CharToon in integrated mode, the data generated by FaceEditor is written to temporary files.
Hence is it very important that you save your work in FaceEditor to permanent files before quitting Char-
Toon.

BackupFile:

Animations/usernameAnimationBackup.aanim animation backup file, re-generated for each run and fre-
quently overwritten by Animation Editor.

The file name starts with the username generated by the system.

1.2. Configuration of the software

The ChartToon software should be installed in a CharToon home directory, without change of the provided
directory structure. All Java classes are to be placed in this home directory, while the provided data files are
placed in default subdirectories. By default, data files are put into the above mentioned directories which the
user may use as working directories. In particular, there are default directories Faces for ‘.dat’ files and Pro-
files for ‘.aprof’ files. However, especially if CharToon is used in a multi-user environment, it is very much
recommended that each user has his own directories with all the data produced by him. Such directories can
be created according to one of the principles below:

1) The user uses an identical name (path) to create subdirectories under Profiles and Faces, and loads pro-
files and face files with explicitly giving the (identical) path to be used under Profiles and Faces. In this
case, the user must start up CharToon from the home directory.

2) The user creates an own user working directory anywhere he wishes, with the subdirectories (with write
permission) listed in 1.1. The default files (if any to be used) should be put under the appropriate subdi-
rectory (can be copied/linked from the default data files provided with the sw, but new files do as well).
The intention is that all essential input/output data files will be loaded from/written to appropriate subdi-
rectories (Profiles, Faces) of the working directory. In this case too it is allowed to create subdirectories
under Faces and Profiles. Note: In this case the user must start up CharToon from his user working direc-
tory.

!! The first case can be seen as the special case when the user working directory is identical to the home direc-
tory. In the rest of the manual, we will refer to working directory as the directory where CharToon should be
started up. This is either the CharToon home directory or a user working directory, depending on which
principle is used to store data.

It is allowed and for extensive use it is recommended to make arbitrary new sub-directories for Movies and
Animations, e.g. storing animations for each face in separate sub-directories. The user must follow one of
the above mentioned protocols, of which 2) is recommended in multi-user environments. However, in both
cases it is also possible to load from/save to arbitrary directories containing profile, face and animation files
once CharToon was started. However, when CharToon is started in integrated mode, or Face Player is
started up from Animation Editor, the face should be found under the same pathname in Faces directory as
the profile file under Profiles.

!! In order to keep track of versions and compatible files, one should use systematic naming for files, e.g. ani-
mation file names like: face_perf_anim, where the three tags identify the face, the (eventual) performer data
the animation is derived from, and the content/version of the animation.

Images and sounds (produced earlier by some other tools) by default are placed in directories ExternalIm-
ages and Sounds. The rest of the directories contain auxiliary files for CharToon, these directories should
not be touched.

1.3. Hardware/software requirements to run CharToon

In order to run CharToon, the following remarks on hardware and software are relevant:

7

1) CharToon should be run using jdk 1.1.X. For Sun’s and Windows systems, this can be downloaded from
http://java.sun.com/products/jdk/1.1/. For SGI systems consult http://www.sgi.com/
Products/Evaluation/#jdk. For Macintosh platforms, download MRJ 2.1.4. from http://dev-

world.apple.com/java/download.html.

!! The user should not attempt to use Java 2, this is not going to work because CharToon as provided has been
compiled with the 1.1.X compiler. The reason for that is that at the time of this writing (surprisingly) the
drawing speed of 1.1.X. graphics is about 10 times faster than that of Java 2.

2) In order to run all of CharToon the environment variable CLASSPATH should be set to the concatenation
(with system-specific separators) of ‘current working directory’ and ‘full pathname of CharToon home
directory’. On Unix systems this looks something like ‘.:/usr/user-name/CharToon’.

3) At the time of this writing, CharToon’s audio facility only works on Sun systems.

4) In this manual we assume keyboard and mouse with (at least) two buttons as input devices. By ‘mouse
click’ we will mean a click with the left mouse button. The mouse may be replaced by some other input
device such as tablet and pen.

8

2. Starting up CharToon

2.1. Integrated mode

All components of CharToon can be started at once and used in a co-ordinated way, in the so-called inte-
grated mode. This usage is recommended if:

• the user is designing a face and testing it by playing animations in an interwoven way,

• the user is a novice.

CharToon is started in integrated mode by the following command:

java AnimEdit -i [-f facefile] [-w width] [-h height] [-l userlevel]

where facefile is a file path name (without .dat extension) in the Faces directory, width and height
are integers specifying the size (in pixels) of the Animation Editor window, userlevel indicates the
expertise of the user to which CharToon is tailored (see 2.3). Knowing the resolution of your screen, you can
specify the proper size of Animation Editor at startup time with the -w and -h options.

CharToon can be quit by the File/Exit menu item in the Animation Editor window.

2.2. Arranging windows of components

When started up in integrated mode, three windows pop up: the Face Editor window, the Animation Editor
window and the Face Player window. Each window can be iconized in the (somewhat system-dependent)
usual way, by selecting a button near the right top corner of the window title bar. Before starting to work
with CharToon, iconize all the three windows, and adjust the size and location of each window in turn
according to the following principles:

1.a.resize Face Player as small as possible, but still showing the complete face and the buttons below it,

1.b.move Face Player window to the bottom right corner of your screen,

2. move and resize Animation Editor such that it becomes as large as possible, but does not overlap the
Face Player window,

3. make sure that the one-line message at the bottom of the Face Editor window is not covered by the icon
bar (one may move the icon bar or hide it).

Now you are ready to use CharToon. Typically, you iconize Animation Editor and Face Player when editing
a face, and recall Animation Editor and Face Player and iconize Face Editor when working on an animation.
Debug messages are sent to the window where CharToon was started from.

!! When the -i option is used without the -f, the user is forced in FaceEditor to open a face or begin a new one.

2.3. Setting the user level

CharToon is a complex program, which can be tailored to the following usage levels:

0: DEMO limited functionality, nothing can be saved,

1: NOVICE basic functionalities,

2: ADVANCED full functionality,

3: EXPERT as 2 plus some experimental features to use sound and print animation score +
debug messages,

4: GURU as 3 plus additional debug information.

Unless a demo version of CharToon was shipped, the user level can be set in two ways.

9

• By startup, the user level can be defined by the [-l level] option, where level is the appropriate
integer.

• Once CharToon is running and not in demo level, the user level can be redefined by invoking the menu

Options/Set user level.

According to the user level, some functionalities are not available, indicated by menu items which are
present but cannot be activated or are even absent. It is recommended to set the user level appropriate. For
first sessions, set the user level to 0 or 1. The user level should not be set to 3 or 4, unless sound is to be used
or debugging information is needed.

!! Note that if the user level is set to 0, the user level cannot be changed any more in that session.

10

3. Face Editor

3.1. The principle of creating faces with Face Editor

Face Editor is the component of the CharToon system by which drawings (of a face) are created. The pro-
gram is intended for the generation of 2D faces with a cartoonish or schematic appearance which later can
be animated (see Plate 2.a and 3.a).

Drawings are built from pre-cooked components. The user includes those components in the drawing by
selecting them from a menu and dragging an inserted instance of them into place. Generally speaking, com-
ponents are elementary geometrical shapes like polygons, ellipses and splines or they are combinations of
those shapes. Components are defined by the points through which they pass. There are control points
(CPs) and fixed points (FPs), see further 3.7.1. After a component is included, it can be edited, i.e. its
appearance can be changed without changing its type. As an extra there is the possibility to include ‘.gif’
images for a kind of background.

While creating a drawing the user also specifies what its potential for animation is. The possibilities are:

1) Many components have ‘internal’ animation parameters (control points or CPs) by which their shape can
be changed. These parameters are a permanent property of those components. This is illustrated in Figure
2, top row where the eyelids open because of a shape-change.

2) For every component there is the option to include an instance of it in the drawing in such a way that its
overall position can be changed dynamically. This is illustrated in Figure 2, second row, where the pupil
moves without changing shape. (Note: when a component is included with that option, the possibility of
position change is a permanent property of this instantiation of it).

Figure 2. Various ways to animate components. Shape change (top row), changing position (row 2), scal-
ing (row 3) and animated visibility (bottom row). Rows should be interpreted as depicting animations.

11

3) For every component there is the option to include an instance of if in the drawing in such a way that its
size (scale) can change. This is illustrated in Figure 2, third row, where the eye as a whole is scaled (this
implements zooming!). (Note: when a component is included with that option, the possibility of scaling is
a permanent property of this instantiation of it).

4) For every component animated visibility can be enabled (or disabled) while editing the component. In
Figure 2 bottom row the pupil has been given the animated visibility property; hence it can disappear and
reappear during animation.

Without having to produce (test) animations, it is possible to experiment with the effect of changing the
position of CPs by switching to so called Test Mode (see 3.6.4). In this mode the user can move CPs around
by dragging them with the mouse. (As discussed in Chapter 6, the construction of actual animations is done
with the help of Animation Editor.)

When a drawing is complete, it has to be saved. In its basic form, this produces ascii files which describe the
drawing in some coded form. Saving produces face files which make it possible to reload the drawing in
Face Editor in order to modify it and to load it in Face Player in order to be able to play an animation for it.
Furthermore, profile files are generated which describe the animation parameters of the face in a form suit-
able for Animation Editor.

3.2. A simple exercise

If the reader feels like getting the flavor of Face Editor before reading the more technical material in the
coming chapters, the following exercise is suggested:

1) Open a window on your system and change the working directory to the home directory of CharToon.
Next, type java FaceEditor. Now Face Editor’s main window appears on the screen.

2) Select File, then select New Face in the menu which pops up. Next, type a name (e.g. test1) in the dia-
log-box which just appeared, type <ENTER> while the cursor is still in the text-field of that box and
push its OK button. The dialog-box and pop-up menu disappear and only Face Editor’s main window
remains.

3) Select IncludeComp, a large menu appears with buttons showing icons of drawing components. Some
contain green hairline crosses, depicting CPs, others don’t. Select the icon with the label ‘Filled Poly-
gon’, it will be outlined in red. Then push the OK button in the menu; the menu disappears and a triangle
is shown in the drawing area of Face Editor’s main window. Press the mouse somewhere in this triangle
and drag it around.

4) Repeat step 3, but now select the ‘Animated Filled Poly’ component which looks like the previous one
but which has a green hairline cross instead of a red dot as its top corner.

5) Select Test in Face Editor’s main menu. Check the All radio button and select Apply followed by Hide
in the ‘Selection- and test specification’ menu which pops up. Now try dragging the green CP around by
its centre. Observe the effect. Finally, select EndTest to quit test mode.

6) Select SelectionOn in the main menu. In the ‘Selection- and test specification’ which appears, check
both All buttons and select Apply and Hide. Now click in one of the triangles. Observe that the one
clicked in retains its original color and gets a highlighted outline, while the color of the other triangle
turns to gray. Next click in the other triangle. In general, the non-gray component is the selected one,
main menu operations like Edit, Drag and Copy apply to that component. Try Copy, next Delete and then
select one of the remaining two components by clicking.

7) Press the CTRL key and select Drag in the main menu. The CTRL key switches on the on-line help
function of Face Editor. A window appears describing the Drag function. Before going on, the help win-
dow must be removed by selecting its OK button.

8) Select Edit in Face Editor’s main menu. An edit menu pops up with operations which are possible for
the selected component. Select the Mirror Vertical item and see what happens. Next select DragFixed-
Points, and try to drag one of the red points in the selected component with the mouse. Also try moving

12

the sliders in the FixedPoint Mover which has meanwhile appeared in the left upper corner of the
screen. Observe that the on-line help (CTRL + menu select) also works for edit menus.

9) Select StopEditing, select the other component and edit that one. Note the difference in the edit menus
for the two components.

10) Select File, then in the pop-up menu select Save. The drawing is now saved under the name specified in
step 2 above.

11) Select File, then in the pop-up menu select Open. A file-dialog appears which lists already existing
faces. Check that the name for the drawing you just created appears in that list.

12) Open one of the faces (for instance ‘DemoHead’ or ‘Chicken’) included in the CharToon release, by
clicking on its name in the file dialog and thereafter selecting the Open button. The selected face appears
in Face Editor’s draw area. Explore the face using Test or SelectionOn and Edit.

3.3. Ways to start up Face Editor

Face Editor can be started up in two ways: in integrated mode or in stand alone mode.

Integrated mode

In integrated mode, Face Editor comes up together with Animation Editor and Face Player. Integrated mode
is obtained by starting Animation Editor with the ‘-i’ option (see 2.1.). In that case, the three components
come up in a setup which is suited for the interwoven development of a face and an animation for it. In par-
ticular Face Editor will show the face we are currently developing, Animation Editor is prepared for the
construction of an animation for that face and Face Player to show snapshots or play segments of that ani-
mation.

Stand alone mode

In stand-alone mode, there is no automatic communication between Face Editor and Face Player or Anima-
tion Editor. In order to start Face Editor stand alone, go to the working directory and type:

java FaceEditor [-f facefile] [-l level]

The -f option is used to instruct Face Editor to load the face found under Faces and identified by the path
facefile. If this option is not used Face Editor comes up with a blank drawing area. In that case the user
can either begin constructing a new face or explicitly load an existing one.

The -l option deals with the user levels 0 (DEMO), 1 (NOVICE), 2 (ADVANCED), 3 (EXPERT) and 4
(GURU) as used by CharToon (see 2.3.). With DEMO level, save operations are forbidden. Face Editor does
not currently distinguish between levels NOVICE, ADVANCED and EXPERT: in those cases full function-
ality is provided (but the rest of CharToon does differentiate between those levels). In GURU level there is
full functionality and a lot of debug information is printed in the start-up window.

3.4. On-line help

Face Editor has two ways of obtaining on-line help:

1) Use the Help main-menu item. This function provides a (very sketchy) overview of Face Editor. After
selecting Help, a scroll list pops up with the titles of some help topics. When double clicking on one of
those, a window appears which gives information on this topic. To quit this help facility, select the Close
button which can be found at the bottom of the window with help titles.

!! Note: there is a bug on Windows systems; the window sometimes comes up grey. Click on its left- or right
border to get its content.

2) There is on-line help available on every menu item. To get help press the CTRL key and select the menu
item. Push OK to get rid of the help window which has popped up.

13

3.5. Components, drawing order and rank

In Face Editor, drawings are constructed by repeatedly adding components. By default, Face Editor draws
components in the order in which they are added. Because components can (partially) overlap, more control
over the drawing order is needed then the one imposed by adding order.

This problem is even more serious in Face Player: there the order in which components of a drawing are
rendered in every single animation frame can in principle be undetermined because of parallelism inherent
in Face Player. So the way in which components overlap is unspecified and can change from frame to frame.

In order to deal with this problem, set two properties of components in Face Editor which are also taken into
account in Face Player (see Figure 3):

1) Components can be declared foreground or background (menu item SetBackGr).

2) The user can assign a rank (in the range 0 - 9) to a foreground- or background component (menu item
SetRank).

With foreground/background and rank the drawing order is as follows:

1) First, all background components are drawn, beginning with those of rank 0, then those of rank 1 etc. The
drawing order of background components of the same rank is still not specified.

2) Next, the same happens for foreground components.

3) In Face Player, an extra property holds which is important for animation speed:; background components
are only rendered once at the start of the animation.

As a consequence, put components into the background which:

1) do not change shape, size and position during animation and

2) do not partially cover a changing component.

By careful layering an effect of depth or 3D perspective can be achieved (see Plate 13).

Figure 3. Foreground, Background and Rank.

14

3.6. Face Editor’s main menu

There are three groups of menu items at the right part of Face Editor’s main window, together referred to
here as Face Editor’s main menu. The topmost group is basically about saving and loading drawings, the
middle one has operations pertinent to the whole drawing and the bottom one contains operations involving
single components or sets of components. In the following paragraphs we discuss these operations one by
one, starting at the top and working our way to the bottom. For explanatory reasons, some of the groups are
further subdivided in this discussion.

3.6.1 Opening and saving faces

The most important save operations are there to generate the face (‘.dat’) files describing a face and the pro-
file (‘.aprof’) files describing its animation parameters. A face can be opened in Face Editor form its face
file. Furthermore, face files and profile files are used for the communication between CharToon compo-
nents, see 1.1. The File item gives immediate access to the basic operations (NewFace, Open, Save and
SaveAs) which is all a non-expert user needs. Furthermore there are some advanced save (and corresponding
open) operations which are to be found under File/More.

In the remainder of this paragraph we discuss the open- and save operations one by one in the order in which
they appear in Face Editor’s main window.

SetCurrent: This menu item only appears in integrated mode. When selected, it transmits changes to the
face being edited to Animation Editor.

SetCurrent generates a face file for Face Player and a profile file for Animation Editor (both with a unique
user-dependent name).

!! Note that these generated files are temporary. Hence it is a must to save the face to a user-defined file before
quitting CharToon.

File: The File menu item gives access to Face Editor’s operations on face files. It brings up a submenu with
items NewFace, Open, Save, SaveAs, More and ParentMenu all of which are explained below.

File/NewFace: NewFace is there to begin a new drawing. It clears the drawing area after which a dialog
appears, through which the system asks for a name for this drawing.

The user should:

1) Enter the name.

2) Hit the <ENTER>-key while the cursor is positioned at the end of that name.

3) Push OK.

This name is used as a default for save operations, unless the user saves to explicitly given filenames.

 See also: Open, More/OpenObject.

File/Open: Open is used to open a drawing which was saved (as a ‘.dat’ file) by Save or SaveAs. When Open
is selected, a file selection dialog will appear from which the user selects the name of the face to open by
either selecting a file in the Files list or by explicitly entering a filename.

See also: Save, SaveAs, More/OpenObject, More/SaveObject, More/OpenObjectAs.

File/Save: Save is used to save the current drawing. Initially, the drawing is saved using the name with
which it has been created by NewFace. When meanwhile another name has been specified during a SaveAs
operation, that name will be used by Save instead. While saving, two ascii files are generated: a description
of the face’s components (a ‘.dat’ file, put in directory Faces) and a separate description of its animation
parameters (an ‘.aprof’ file, placed in directory Profiles).

See also: Open, SaveAs, More/SaveFaceScriptAs, More/SaveProfileAs.

File/SaveAs: SaveAs is used to save the current drawing.

A file selection dialog will appear by which the user specifies a file name by either selecting a file in the
Files list (the file then will be overwritten), or by explicitly entering a name for the file.

15

!! Although face files should have a ‘.dat’ extension, the user should not type one: It is automatically gener-
ated by CharToon. If a file name has been selected from a list, the .dat extension should be removed.

While saving, two ascii files are generated: a description of the face’s components and a separate description
of its animation parameters. By default, the face file is placed in subdirectory ‘Faces’ and the profile in sub-
directory ‘Profiles’. .

See also: Open, SaveAs, More/SaveFaceScriptAs, More/SaveProfileAs.

File/More: Selecting this menu item produces a submenu with open- and save operations of a more com-
plex kind then the ones in the File menu. Those operations are explained below.

File/More/OpenJavaObject: OpenJavaObject opens a face which has previously been saved as a Java
object by SaveObject or SaveObjectAs. A file selection dialog will appear by which the user specifies a face
by either selecting a file in the Files list or by explicitly entering the name of the face to be opened.

See also: NewFace, SaveObject, SaveObjectAs.

File/More/SaveJavaObject: SaveObject is used to save the current drawing as a Java object. By default,
the object is saved using the name with which the drawing is created (by NewFace) or loaded (by Open or
OpenJavaObject). When meanwhile another name has been specified during a SaveAs operation, that name
will be used by Save instead. The file in which the object is saved is placed in directory ‘FaceObjects’.

The use of SaveJavaObject is to save a drawing in order to continue working on it at a later time using Open-
JavaObject. SaveJavaObject can not be used to save the drawing in a form suitable for Animation Editor or
Face Player. To that end, use Save, SaveAs, SaveFaceScriptAs or SaveProfileAs.

Note: Within the framework of CharToon, there is not much point in saving faces as Java objects. Saving as
face files is as good or better. The possibilities for saving as object are provided in order to enable a user to
generate faces which can be potentially dealt with by other Java program which uses the drawing compo-
nent class hierarchy of CharToon but does not know of face files.

See also: OpenObject, SaveObjectAs, Save, SaveAs, SaveFaceScriptAs, SaveProfileAs..

File/More/SaveJavaObjectAs: SaveJavaObjectAs is used to save the current drawing as a Java object.

A file selection dialog will appear from which the user selects a name for the saved object by either select-
ing a file in the Files list or by explicitly entering the name of the saved face object. The object is stored as a
file which is placed in directory ‘FaceObjects’ unless the user explicitly specifies another directory in the
file dialog. Saved object files do not have a file extension, neither generated automatically nor provided by
the user.

The reasons for using SaveJavaObjectAs are identical to those for using SaveJavaObject.

See also: SaveObject, OpenObject, Save, SaveAs, SaveFaceScriptAs, SaveProfileAs.

File/More/SaveFaceScriptAs: SaveFaceScriptAs is used to save the current drawing as an ascii ‘.dat’ file.
stored in directory ‘Faces’. The difference with File/Save and File/SaveAs is, that only a ‘.dat’ file is gener-
ated and no ‘.aprof’ file. In other aspects, SaveFaceScriptAs behaves as File/SaveAs.

Suppose the user wants to change a face a little, e.g. by removing a CP and still be able to edit and play old
animations for it. In that case, the changed face should be saved without changing its profile. SaveFace-
ScriptAs does just that. Such possibilities are further explained in 6.1.1.

See also: Save, SaveAs, IncludeScript, More/SaveProfileAs.

File/More/SaveProfileAs: SaveProfileAs creates a profile file with ‘.aprof’ extension in directory ‘Pro-
files’. This file describes the CPs of the current drawing in the format expected by Animation Editor. The
difference with File/Save and File/SaveAs is, that only an ‘.aprof’ file is created and no ‘.dat’ file. The
name of the saved file is entered through a file-dialog which pops up when SaveProfileAs is selected.

This facility is to be used if the user wants to experiment with an existing face but with different ranges for
its animation parameters and wishes to reuse animations made earlier for the original face. A solution is to
edit the face’s control ranges in Face Editor and then to produce a profile file reflecting those changed
ranges (without changing the face file) using SaveProfileAs. For using such a profile see 6.1.1.

16

See also: Save, SaveAs, More/SaveFaceScriptAs.

File/More/PackIds: Animation parameters are assigned numerical identifiers when they are created by
Face Editor. These ids play a crucial part in the interface between Face Editor and Animation Editor. When
components (or just CPs) are deleted during editing of a face, gaps are produced in the sequence of identifi-
ers. Normally this does not matter, but when the gaps and consequently the large ids are getting annoying
(Animation Editor will show these gaps in the parameter numbers). PackIds will generate a new set of con-
secutive ids which will be used by Save, SaveAs, SaveFaceScriptAs and SaveProfileAs for the generation
of profile files.

!! After the execution of PackIds and one of the Save operations, animations made earlier by Animation Editor
will no longer work as intended! So either use PackIds after editing a face but before making animations, or
make sure that the parameter names are not changed so that Animation Editor’s Reanimate facility can be
used for the loading of animations which were made prior to the PackIds operation.

File/More/ParentMenu: See File/ParentMenu.

File/ParentMenu: Selecting ParentMenu brings one back to the menu one level higher in the menu hierar-
chy.

3.6.2 Global drawing options

The operations discussed here are there to assist the user in producing drawings by providing grids and hair-
lines or by controlling the way in which components can be selected. They are all accessed from the main
menu item DrawOptions.

Because Java draws in pixels, Face Editor does the same. This has the consequence that if a drawing is
designed on a large, high-resolution screen and later it is displayed on a screen with less pixels, it will only
be displayed partially. All of it can still be viewed though, using Face Editor’s main menu Drag function.
That way, the drawing can be viewed piece by piece.

When the user resizes the drawing window, the following happens, depending on which one of the menu
items DrawOptions/AdaptDrawingSize or DrawOptions/FreezeDrawingSize has been activated the last.

In the case of AdaptDrawingSize, enlarging the window results in a larger drawing area without scaling the
drawing, reducing the window results in hiding part of the drawing, again without scaling. In any case a
resize can be undone by the inverse resize. This effect can be made permanent by a Save: the drawing is then
saved with the size as shown on the screen at the time of the Save.

In the case of FreezeDrawingSize, the drawing does not respond to window-resizes: only when the window
is made smaller then the drawing, part of it is obscured.

!! It is recommended to fix the drawing size to avoid unintended size changes.

Including a face file of a drawing (IncludeScript) into another drawing will influence the size of the other
drawing if the included one is larger. In that case the drawing area will be enlarged to the size of the
included drawing without resizing or displacing the first one.

DrawOptions: When this item is selected, a submenu appears having entries: Grid, Hairline,
ShowSelection_TestControl, HideSelection_TestControl and ParentMenu. These items are explained
directly below.

DrawOptions/Grid: Grid displays a dialog box which can be used to specify a drawing grid. A drawing
grid is a temporary collection of horizontal- and vertical lines which can be used to precisely place drawing
components into position. The dialog box contains:

1) A set of radio buttons (top row) used to select the grid-spacing. There are buttons with labels like ‘50*50’
which will produce a grid dividing the drawing in 50 squares horizontally and 50 squares vertically irre-
spective of drawing size and there are buttons like ‘10px’ which will produce a 10 pixels wide grid.

2) A set of radio buttons (middle row) used to select the grid-color.

17

When the OK button of the dialog is pressed, the grid is actually applied. The Cancel button disposes of the
dialog without any effect on the grid.

See also HairLine.

DrawOptions/Hairline: Hairline displays a dialog box which can be used to specify a hairline cross. A
hairline cross consists of a horizontal and a vertical line which can be used to precisely place drawing com-
ponents into position. The hairline can be positioned by dragging its arrow-heads.

The dialog box contains:

1) A button (top row) used to indicate whether the hairline should be shown or not.

2) A set of radio buttons (middle row) used to select the hairline-color.

When the OK button on the dialog is pressed, the hairline is actually applied. The Cancel button disposes the
dialog without any effect on the hairline.

See also Grid.

DrawOptions/ShowSelection_TestControl: ShowSlection_TestControl limits the set of components of a
drawing from which it is possible to select.

The user has to select a component if it must be dragged, deleted or modified by Edit operations. Select by
either clicking in the interior of a closed component or by clicking on one if its CPs or FPs. The cursor must
also be placed at CPs when in test mode.

Because a complex drawing is crowded with (sometimes hierarchical) components, selecting by clicking in
the unrestricted set of components can be rather difficult because sensitive elements are far too close to each
other. ShowSelection_TestControl displays a dialog box which can be used to limit the set of sensitive com-
ponents. The components which can be selected are highlighted (as well as their FPs- and CPs). The dialog
contains:

1) A button (Select or test foreground components) which, when pushed, makes foreground objects
selectable.

2) A button (Select or test background components) which, when pushed, makes background objects
selectable.

3) A slider which when used specifies one foreground layer to select from. Only the layer indicated by the
slider is made sensitive, other layers which might have been made sensitive by the check-buttons (see
below) are deactivated. So use the slider to find out to which layer a component belongs and to make that
layer the only one which is sensitive for selection (ore testing).

4) A set of check-buttons, one for every foreground layer. When the button labelled ‘i’ is pushed, fore-
ground objects with rank ‘i’ are selectable. The user can also press the all button. In that case all fore-
ground objects, irrespective of their rank, can be selected.

5) The same as 3) and 4) above, but then for background components.

6) A button labelled Show not selected in gray. When checked, the whole drawing is shown in various
shades of gray, apart from the selected (sub)component, which is rendered in its full color. When this but-
ton is not checked, all of the drawing is in full color and the selected (sub)component is only outlined by
a thick contour of contrasting color.

For testing (see 3.6.4), a subset of this dialog appears. In that case it is only possible to indicate which fore-
ground objects can be tested.

The user actually changes the set of selectable components by pressing Apply. The dialog disappears without
any effect when Hide is pushed.

See also: DrawOptions/HideSelection_TestControl, Selection On, Selection Off, Test, EndTest,
SetRank, SetBackGr.

DrawOptions/HideSelection_TestControl: This menu-choice removes the Selection- and Test control dia-
log from the screen.

18

See also DrawOptions/ShowSelection_TestControl.

DrawOtions/FreezeDrawingSize: Normally, the face drawing adapts its size (without scaling) when the
Face Editor window is resized interactively. When FreezeDrawingSize is selected, this feature is disabled;
the face’s size is frozen to its current size. It the window is made bigger, a white empty border is produced,
if the window is made smaller, the face is partially obscured but does not get smaller.

See also: AdaptDrawingSize.

DrawOptions/AdaptDrawingSize

Normally, the facial drawing adapts its size when the Face Editor window is resized interactively. When this
feature has been disabled by FreezeDrawingSize, AdaptDrawingSize enables it again.

See also: FreezeDrawingSize.

DrawOptions/ParentMenu: See File/ParentMenu.

3.6.3 Global drawing operations

The operations discussed in this paragraph act on the whole drawing by changing its global color, position
or size.

SetBackgrColor: SetBackGrColor displays a color selection tool through which the color of the background
of the drawing is specified.

In the color selector a color is selected either by:

1) clicking in the upper left hand square to select a color.

2) clicking in the face drawing to select a color which has already been used (this may take a long time).

3) fine-tuning the selected color by clicking in one of the two color strips on the right hand side of the selec-
tor.

4) using the sliders on the lower left hand side of the color selector.

5) clicking in the horizontal grey strip to select a shade of grey.

In all cases the selected color appears in the lower right hand square of the color selector. The background is
actually set to the selected color after pressing the Apply button. Terminate color selection by pressing the
Stop button.

Drag: Drag is used to indicate that the user wants to drag the drawing to a different position. In order to drag
select Drag and hold down the mouse button and move the mouse in order to move the drawing.

!! Note: After Drag the face must be saved because the position of CPs has changed. Note also that scaling
does not change the size of the drawing area if it was frozen before.

Scale: Scale is used to indicate that the user wants to scale the drawing to a different size. In order to scale:
select Scale and move the mouse holding the button down.

During scaling a cross appears in the middle of the drawing. This cross represents the origin of the scaling
transformation. Moving the mouse to the right or left (holding the button down) enlarges resp. reduces the
drawing in the horizontal direction. Moving the mouse up or down changes the vertical dimensions of the
drawing.

!! Note: After Scale the face must be saved because the position and range of CPs has changed.

3.6.4 Test mode

It is possible to get an idea of the potential for animating a face by trying out the effect of dragging the posi-
tions of CPs. (Visibility- or scale parameters cannot be tested.)

Test: The Test button puts Face Editor in test mode. In this mode, the user can drag a CP to observe its
effect. Changes made that way are not permanent. When EndTest is selected, the drawing is restored to its
neutral state.

19

See also: EndTest.

EndTest: When EndTest is selected, Faced Editor is put back from test mode to normal mode. Changes to
the drawing made during testing are undone.

See also: Test.

3.6.5 Intermezzo: component selection

Before the user can perform operations (e.g. Copy, Drag or Edit) on a single component he first has to indi-
cate the component which is the target of the operation. This process is called selection. Having a rough
understanding of selection is necessary before reading the next paragraphs, so here is how it works:

• First enable selection using the Selection On operation (for details, see below). While doing so, one can
also restrict the set of selectable components.

• Next select a component by clicking in its inside or on one of its fixed or control points (which are
shown with emphasis for selectable components).

When it is necessary to edit a subcomponent (or subcomponent of a subcomponent etc.) of a composite
component select that one by descending the (sub)component’s hierarchy. This is done as follows:

• First select the component, then Edit it (for details see below). In the edit menu which pops up, select
SelectSubComponent after which it is possible to select one of the component’s subcomponents in the
usual way by clicking.

• Next deal further with this subcomponent via the EditSelectedSubcomponent menu item.

Repeat this process as long as one has to descend to deeper subcomponent levels. At every step, an extra
edit menu appears which is pertinent for the subcomponent selected latest (i.e. the deepest in the hierarchy).
As an aid in keeping track of those menus they show the nesting level of their subject (sub)component in
their title-bar. In order to go up in the hierarchy use StopEditing from one of the edit menus. Suppose uses
StopEditing is used from a menu which is at level i. Then all menu’s with level >= i disappear and one ends
up with the menus for those components with levels < i which were visited while descending the hierarchy.
In short it is possible to move up in the hierarchy without retracing all the steps taken on the way down.

3.6.6 Operations on components

Face Editor’s main menu operations discussed in this paragraph only operate on one single drawing compo-
nent or are used to add components to the drawing. For operations which act on a component, that compo-
nent has to be selected (see 3.6.5) first.

IncludeComp: IncludeComp shows a dialog box from which the user can select a drawing component to be
added to the current drawing (see Figure 4). A component is selected by clicking on its icon. The selected
component is highlighted by a red border around its icon. The user can get interactive help on the compo-
nent by clicking on it while holding the CTRL key down.

At the bottom of the dialog box there are 4 buttons:

1) Animate Origin. When this button is checked, the selected component will be included in the drawing
with an animated origin, which makes it possible later to dynamically move the component without
changing its shape by modifying an x- and y- position animation parameter (using Animation Editor). In
Face Editor, an animated origin is shown as a green hairline cross with a light blue circle, an non-ani-
mated origin (the default) is displayed as a light blue dot.

2) Animated Scale. When this button is checked, the selected component will be included in the drawing
with an animated scale, i.e. it is possible later to dynamically change the x or y scale of the component by
modifying just an x- and y- scale animation parameter (using Animation Editor). Scaling amounts to mul-
tiplying the drawing’s coordinates with respect to some point. This point’s position is identical to the
position of the component’s origin and (in the current version of Face Editor) it cannot be set to a differ-
ent value.

3) OK The selected component is included in the drawing.

20

4) Discard The dialog box disappears. No new component will be included.

IncludeScript: IncludeScript is used to include in the current drawing another drawing which was saved
as a ‘.dat’ file by Save, SaveAs or SaveFaceAs. When IncludeScript is selected, a file selection dialog will
appear from which the user selects the name of the drawing to include by either selecting a file in the Files
list or by explicitly entering the filename. The difference with File/Open is that IncludeScript adds the
drawing to the existing one, while File/Open replaces the current drawing.

See also: Save, SaveAs, SaveFaceAs.

Selection On: Selection On turns on the possibility to select a drawing component by a mouse click. After
Selection On is selected the ‘Selection- and test specification’ dialogue pops up which must be used to indi-
cate which components of the drawing can be selected. For information on this dialog, see the discussion of
DrawOptions/ShowSelection_TestControl. The components which are selectable according to the ‘Selec-
tion- and test specification’ dialog are shown with highlighted FPs and CPs (see Plate 2.b and 3.b). A com-
ponent is selected by either clicking on one of those points or (for a closed component) by clicking in its
interior. Selecting a component is necessary before performing component-specific operations like Edit,
Delete, Copy etc.

See also: Selection Off, DrawOptions/Selecion_TestControl.

Selection Off: Selection Off has a twofold effect:

1) there is no longer any drawing component selected,

2) the FPs and CPs of components are no longer shown explicitly in the facial drawing, i.e. the drawing
looks the way it will look like in an animation (see Plate 2a and 3a).

See also: Selection On, DrawOptions/Selection_TestControl.

SaveSelAsComp: When SaveSelAsComp is selected, the currently selected component of the drawing is
saved as a so called User Defined Composite Component (see 3.7.6).

A file selection dialog will appear in which the user specifies a name for the composite component to save
by either selecting a file in the Files list or by explicitly entering a filename.

Figure 4. Face Editor’s component selection window. For every type of component, there is an icon which
must be selected in order to select that component for inclusion. At the lower left corner there are the ‘Ani-
mated Origin’ and ‘Animated Scale’ buttons which can be checked for any selected component, before its is

included by pressing the ‘OK’ button.

21

The User Defined Composite Component which is constructed this way can be incorporated in (other)
drawings by using the IncludeComp main menu item followed by the ‘UserDefinedComposite’ button
(appearing in the menu which pops up after IncludeComp is selected).

The motivation for creating a User Defined Composite Component can be:

1) to reuse parts of a drawing.

2) to create a component from a set of other components which behaves as a unit under scaling, dragging
etc.

See also: SaveAllAsComp, IncludeComp.

SaveAllAsComp: When SaveAllAsComp is selected, the collection of all components of the current drawing
is saved as a so-called User Defined Composite Component. In all other aspects, SaveAllAsComp is identical
to SaveSelAsComp

See also: SaveSelAsComp, IncludeComp.

Delete: Selecting Delete deletes the currently selected component from the drawing. When no component is
selected, nothing happens.

Copy: Copy makes a copy of the selected component which is included straight away in the current drawing.

Edit: When Edit is selected, the currently selected component (if any) will be editable. A menu pops up
showing the edit operations which are possible for the component (see 3.8.).

Drag: Drag is used to indicate that the user wants to drag the selected component to a different position. In
order to drag select Drag and drag with the mouse.

SetRank: SetRank gives the user the possibility to set the rank of a component by entering the rank number
in the appropriate field of the dialog which pops up after SetRank is selected. Rank-numbers range from 0 to
9 inclusive. The rank-numbers of foreground and background components are taken into account indepen-
dently.

During animation, first the background components are drawn in order of increasing rank, next the fore-
ground objects are drawn, also in order of increasing rank. The drawing order of objects of the same rank
which both belong to the background or both belong to the foreground is unspecified.

See also: SetBackGr, SelectionControl.

SetBackGr: SetBackGr places a component in the background or brings it back to the foreground. The com-
ponents of a drawing are either foreground- or background components. During animation, background
components are only drawn once, whereas the foreground components are drawn on top of the background
for every new animation frame.

For efficiency reasons it is recommended to place in the background every component which:

1) does not change shape, size and position during animation and

2) does not partially cover a changing component.

See also: SetRank, SelectionControl.

3.7. Components of drawings

3.7.1 Elements of components

Every component has an origin which defines its overall position and possibly the centre around which it is
scaled. The origin either is a FP (see below) in which case the component stays in place during animation or
it is a CP (see below), enabling the animator to move the component as a whole using only two (x- and y)
parameters. Origins are shown in Face Editor as cyan (light blue) colored dots, or green crosses with a cyan
circle around them.

22

Internally, an origin serves as the centre of the coordinate system in which the component is defined. This
explains why moving the origin amounts to moving the component and why the position of the origin with
respect to other elements of the component cannot be changed.

Components are built up from polylines, polygons, splines, ellipses or (.gif) images. All these elements of
components are defined, among other things, by their origin, and by points through which they pass or
which specify a bounding box which encloses them. In Face Editor these points are rendered as colored
objects (see below) and they are mouse-sensitive in order to allow them to be edited. During animation (i.e.
when using Face Player) they are not shown.

There are two types of points: Fixed Points (FPs) and Control Points (CPs).

Fixed Points: In Face Editor, fixed points are normally rendered as red dots (unless they are ‘frozen’ in
which case they are dark blue see 3.7.2). There are edit operations to insert, delete or drag them. During ani-
mation they remain stationary or they change position as a result of moving or scaling the component to
which they belong to or of deforming its skeleton (see 3.7.2).

Control Points: In Face Editor, CPs are normally rendered as crosses with tiny lines at the end of the arms
of the cross. A CP corresponds to two animation parameters, one to specify the time-dependent horizontal
position of the CP, another one to specify vertical position. The length of the arms of the cross indicates the
interval in which they are allowed to move. Normally, these intervals are graphically represented in Anima-
tion Editor. Furthermore, CPs have parameter names which can be set by the user. Meaningful names help to
identify the corresponding animation parameters in Animation Editor for the benefit of the user. (Note that
the software-wise communication between Face Editor, Animation Editor and Face Player does not use
those names, but depends on automatically generated unique identifiers.)

There are three kinds of CPs: independent ones (shown in green), leaders (shown in yellow) and followers
(shown in grey). Each follower has a leader. When a follower must become a lead itself, its leader is used
instead. When the leader changes position, the follower moves by a proportional amount (i.e. according to
the ratio between the intervals in which the leader and the follower may move). Followers are not shown in
Animation Editor and do not have an independent control range.

Naturally, there are edit operations to insert, delete and drag CPs, to change their ranges and parameter
names and to specify leader/follower properties.

We can now discuss the elements out of which components are built. As said, these elements themselves
depend on FPs and CPs.

Polyline: Components can contain series of FPs and CPs connected by lines. When the first and last point of
such a series are not connected we call the connected series a polyline.

Polygon: A polygon is just a closed polyline i.e. its first and the last point are always connected.

Spline: When a component contains a polyline or polygon there is the possibility to draw the same compo-
nent not with straight lines connecting its points, but with smooth curves (cubic splines). The choice
between these possibilities is made through an edit operation in Face Editor, it cannot be changed while
playing an animation.

Ellipse: Components can also contain ellipses defined by their width and height.

Image: Finally there are components which correspond to a‘.gif’ image.

3.7.2 Types of components

We distinguish components in a number of different ways. This results in a (somewhat adhoc) classification
which we will often use in this manual.

The main distinction between components is that of fixed and animated. Fixed components contain only
FPs, they do not change shape during animation (although they can move around or be scaled when
included with an ‘animated origin’ or ‘dynamic scaling’, see 3.6.6). Animated ones contain CPs so they can
always change shape during animation (on top of that they can of course be included in the drawing with
animated origin etc.)

23

Another important distinction between components is that of basic and composite.

Basic components consist of one and only one polyline, polygon, ellipse or image. We also refer to polyline
basic components as open, to polygon and ellipse basic components as closed. In addition, there is the dis-
tinction between transparent and filled (or opaque) for closed components. The transparent ones are just
polygons rendered as a collection of lines, the filled ones consist of a polygon whose interior area is ren-
dered in a specific color.

Composite components are constructions using basic components and other composite components as
building blocks. So they consist of a hierarchically ordered set of polylines, polygons etc. Important sub-
classes of the composite components are the point skeleton and edge skeleton classes which we will dis-
cuss now (The discussion of the UserDefinedComposite subclass will be deferred to 3.7.6).

Skeleton components are a subset of composite components. They consist of two subcomponents: a skele-
ton and a body both of which are a polygon or polyline. The skeleton is always animated (i.e. contains CPs),
while the body contains only FPs which can be considered as coupled to the skeleton. The idea is that when
the skeleton moves (i.e. its CPs change position), the FPs of the body move in synchrony with the skeleton.

The way in which body points are coupled to the skeleton leads to the distinction between point skeleton
and edge skeleton components. The two types of skeleton component have in common that FPs of their
body’s can be immobilized by the FreezeFixedPoints edit operation (see 3.8).

Figure 5. A point skeleton component, neutral (left) and deformed (right).

Figure 6. A point skeleton component, neutral (left) and deformed (right). Note the ‘joint’ in the middle,
the short skeleton and the way the ‘diamond’ shape at the right is preserved.

24

Point skeleton components work as follows: When the component is created, hence when the skeleton is in
its neutral position and all CPs on the skeleton have neutral value, for every point B on the body the point S
is determined on the skeleton which is closest to B, and where S can be either a CP or a FP. Next the vector
(i.e. distance and direction) form S to B is determined. During animation these vectors are kept constant, so
when the skeleton moves, a body points B remains at a constant distance and in a constant direction relative
to its associated skeleton point S. So, when B is initially closest to a CP S it moves when S moves (see Fig-
ure 5). When it is closest to a FP S, it remains in place. This last feature gives an easy way to roughly mimic
the effect of skeletons with joints (see Figure 6). Unfortunately, the fact that body points closest to fixed
skeleton points do not move, can have undesirable effects. Consider the mouth-shape shown in Figure 7
below which consists of a ring-shaped point skeleton (modeling the inside of the lips) and a ring-shaped
body (modeling the outside of the lips). The four body points close to the mouth-corners are coupled to the
fixed skeleton points representing the inside of the mouth-corners. Hence, these four body points do not
move when the mouth is opened, which leads at certain places to zero lip thickness. This phenomena can be
remedied using edge skeletons (see Figure 10).

As said, body points of both point skeleton and edge skeleton components can be immobilized using the
FreezeFixedPoints edit operation. In this way, body points can be anchored to their environment. The use
of this is illustrated in Figure 8 which shows a ‘lower jaw’ constructed from a point skeleton with only one
control point and a body of eight points. The leftmost and rightmost body points are frozen. That way, the
jaw’s endpoints stay in place.

Edge skeleton components differ from point skeletons in the way the body points are coupled to the skele-
ton. Roughly speaking, body points are projected on skeleton edges and certain features of this projection
are kept constant during animation. The most striking result is, that in principle all body points of an edge
skeleton component can move. How this works is explained in the following example:

Figure 7. Mouth shape with point skeleton, neutral (left) and deformed (right). The four body-points
marked with ‘X’ do not move which results in zero lip-thickness (indicated by arrows).

Figure 8. A point skeleton component with two frozen body points (indicated by arrows). Neutral shape
(left) and deformed shape (right).

25

In Figure 9 we see body point B1 projected on a skeleton edge whereby the projected point P1 lies between
the endpoints of the edge. Body point B2 has a projection P2 which lies on an extension of the edge. When
the skeleton is in its neutral position, the projection distances d1 and d2 are calculated as well as the dis-
tances of the projections P1 and P2 from the endpoints of the edges on which they lie (i.e. the distances l1,
r1, l2 and r2). Now what happens is, that during animation d1 and d2 and the ratios l1/r1 and l2/r2 are kept
constant.

How CharToon chooses the skeleton edge on which body point B is projected is somewhat complex. The
algorithm is as follows:

1) Do not consider skeleton edges E where the line connecting B with its projection P on E does intersect
any other edge.

2) From the remaining edges select those who have an endpoint which lies closest to B. Sometimes there is
only one such edge which is then the one to which B will be coupled. Sometimes there are more then one
of such edges, either by coincidence or (more probable) because B lies closest to an endpoint which is
common to two connecting edges.

3) If among the remaining edges there are edges E such that the projection P of B on E lies between the end-
points of E, retain only those. In other words, remove those edges where the projection P lies on an exten-
sion of the edge if there are other edges at all.

4) From the remaining edges choose the one for which the distance between B and P is minimal.

5) If the set of remaining edges still contains more then one edge, just choose the first one encountered in the
process.

B1

P1
*

B2

P2*

d1

d2

l1

r1

l2

r2

Figure 9. Projection of body points in a skeleton component.

Figure 10. Mouth shape using an edge skeleton, neutral position (left) and deformed (right). Note that the
problem occurring with the point skeleton mouth (see Figure 7) is absent here.

26

3.7.3 Basic components

In this section, the basic components are discussed one by one in the order in which their icons occur (from
left to right and from top to bottom) in Face Editor’s component selection menu (see Figure 4) which
appears after main menu item IncludeComp is activated.

Polyline: A prototype for a fixed (i.e. containing only FPs) open polyline, having an arbitrary number of
FPs as vertices. FPs can be added, deleted and dragged by edit operations.

Polygon: A prototype for a closed transparent polygon, having an arbitrary number of FPs as vertices. FPs
can be added, deleted and dragged by edit operations. The polygon remains closed while editing.

Filled Polygon: A prototype for a fixed closed filled (i.e. opaque) polygon, having an arbitrary number of
FPs as vertices. FPs can be added, deleted and dragged by edit operations. The polygon remains closed
while editing. The user can also edit the (opaque) interior color of the polygon.

Animated polyline: A prototype for an animated (i.e. containing CPs) polyline, having an arbitrary number
of FPs and at least one CP as vertices. FPs and CPs can be added, deleted and dragged by edit operations.
During animation the shape of the polyline can be changed by moving its CPs.

Animated Polygon: A prototype for an animated closed transparent polygon, having an arbitrary number of
FPs and at least one CP as vertices. FPs and CPs can be added, deleted and dragged by edit operations. The
polygon remains closed while editing. During animation the polygon can be changed by moving its CPs.

Animated Filled Polygon: A prototype for an animated closed opaque polygon, having an arbitrary number
of FPs and at least one CP as vertices. FPs and CPs can be added, deleted and dragged by edit operations.
The polygon remains closed while editing. The user can also edit the interior color of the polygon. During
animation the shape of the polygon can be changed by moving its CPs.

Ellipse: A fixed transparent ellipse which is specified by a bounding box. The bounding box contains 4 FPs
and the ellipse cannot have an interior color, it is transparent. The user can move the vertices of the bound-
ing box by editing.

Filled Ellipse: A fixed opaque (i.e. filled) ellipse which is specified by a bounding box. The bounding box
contains 4 FPs. The ellipse has an interior color which can be edited. The user can move the vertices of the
bounding box by editing.

Animated Ellipse: An animated transparent ellipse which is specified by a bounding box. The bounding
box has three FPs and one CP. The ellipse is transparent. In Face Editor the user can move the vertices of the
bounding box by editing. The shape of the ellipse can be changed during animation by changing the position
of the CP.

Animated Filled ellipse: An animated opaque ellipse which is specified by a bounding box. The bounding
box has three FPs and one CP. The ellipse has an interior color (which can be edited). The user can move the
vertices of the bounding box by editing. During animation the shape of the ellipse can be changed by mov-
ing its CP.

Free Drawing Open: An arbitrary one-piece fixed open polyline which is created by pressing the mouse
somewhere in the drawing and dragging thereafter. When the mouse is released the drawing cannot be
changed anymore. After creation, this object can be edited as if it were a Fixed Open Polyline.

Free Drawing Closed: An arbitrary closed fixed transparent polygon which is created by drawing with the
mouse just like creating a Free Open Drawing. When the mouse is released, the polygon is completed with
one final edge to close it. After creation, this object can be edited as if it were a Fixed Closed Transparent
Polygon.

Free Drawing Filled: An arbitrary closed fixed filled polygon which is created by drawing with the mouse
just like creating an Free Closed Transparent Drawing. After creation, this object can edited as if it were a
Fixed Closed Filled Polygon.

Image: A component which displays an image which must be available as a ‘.gif’ file. Upon creation, this
component displays the FASE logo as Image. There is an edit option to change this default image into any

27

other ‘.gif’ image. The image can be scaled in Face Editor too but is of fixed size and content in an anima-
tion. It’s intended use is as background, logo etc.

3.7.4 Skeleton components

Skeleton components give the possibility to roughly mimic the effect of a body coupled to a skeleton. The
skeleton is animated (by only a few) animation parameters; while moving it drags along the body (see fur-
ther 3.7.2.).

Open Body Point Skeleton: An animated ribbon-like object consisting of an open body polyline and a
polyline skeleton. The skeleton has CPs. The body is point-animated so when the skeleton moves the verti-
ces of the exterior body polygon follow the vertices of the skeleton. (For details, see 3.7.2.)

Filled Body Point Skeleton: An animated ribbon-like object consisting of a closed, opaque body polygon
with a polyline skeleton inside. The skeleton has CPs. When the skeleton is animated the vertices of the out-
side polygon follow the vertices of the skeleton. (For details, see 3.7.2.)

Open Body Edge Skeleton: An animated ribbon-like object consisting of an open body polyline and a
polyline skeleton. The skeleton has CPs. When the skeleton is animated the vertices of the outside polygon
follow the edges of the skeleton. (For details, see 3.7.2.)

Filled Body Edge Skeleton: An animated ribbon-like object consisting of a closed, opaque body polygon
with a polyline skeleton inside. The skeleton has CPs. When the skeleton is animated the vertices of the out-
side polygon follow the edges of the skeleton. (For details, see 3.7.2.)

Ring Inside Point Skeleton: An animated ring-like object consisting of a closed, opaque exterior body
polygon with a closed, opaque polygon skeleton inside. The skeleton has CPs. When the skeleton is ani-
mated the vertices of the outside polygon follow the vertices of the skeleton. (For details, see 3.7.2.). Note:
This component looks like a band with an opaque interior area. It can be used for the construction of simple
mouth-shapes, pairs of eyelids etc.

Ring Outside Point Skeleton: An animated ring-like object consisting of a closed, opaque interior body
polygon with a closed, opaque polygon skeleton outside. The skeleton has CPs. When the skeleton is ani-
mated the vertices of the inside polygon follow the vertices of the skeleton. (For details, see 3.7.2.) Note:
This component looks like a band with an opaque interior area. It can be used for the construction of simple
mouth-shapes, pairs of eyelids etc.

Ring Inside Edge Skeleton: An animated ring-like object consisting of a closed, opaque exterior body
polygon with a closed, opaque polygon skeleton inside. The skeleton has CPs. When the skeleton is ani-
mated the vertices of the outside polygon follow the edges of the skeleton. (For details, see 3.7.2.) Note:
This component looks like a band with an opaque interior area. It can be used for the construction of simple
mouth-shapes, pairs of eyelids etc.

Ring Outside Edge Skeleton: An animated ring-like object consisting of a closed, opaque interior body
polygon with a closed, opaque polygon skeleton outside. The skeleton has CPs. When the skeleton is ani-
mated the vertices of the inside polygon follow the edges of the skeleton. (For details, see 3.7.2.) Note: This
component looks like a band with an opaque interior area. It can be used for the construction of simple
mouth-shapes, pairs of eyelids etc.

3.7.5 Predefined facial elements

There are some (simple) components which can directly be used for the modeling of eyebrows, mouth and
eye. More refined mouth-shapes etc. have to be build by the user from elementary components and skeleton
components discussed above. In particular, the eyebrows and mouth shapes provided are point animated
skeleton components. They are derived from Filled Body Point Skeleton resp. Ring Point Skeleton compo-
nents. The user can derive analogous components from the EdgesAnimated components. Those allow for
more subtle shapes when the user adds more FPs to the body polygon of the component. If so desired the
user can make his own library of such components using the User Defined Composite mechanism discussed
below.

28

!! Note: In the following discussion, ‘left’ means the left side of the face, which is at the right for the user.

Left Brow-1: A left eyebrow consisting of an interior skeleton with one CP and an enveloping polygon.
While animating, the vertices of the polygon follow the vertices of the skeleton.

Left Brow-2: A left eyebrow consisting of an interior skeleton with three CPs and an enveloping polygon.
While animating, the vertices of the polygon follow the vertices of the skeleton.

Right Brow-1: A right eyebrow consisting of an interior skeleton with one CP and an enveloping polygon.
While animating, the vertices of the polygon follow the vertices of the skeleton.

Right Brow-2: A right eyebrow consisting of an interior skeleton with three CPs and an enveloping poly-
gon. While animating, the vertices of the polygon follow the vertices of the skeleton.

Mouth-1: A mouth consisting of an outside skeleton with four CPs and another interior polygon. While ani-
mating, the vertices of the interior polygon follow the vertices of the skeleton.

Mouth-2: A mouth consisting of an outside skeleton with eight CPs and another interior polygon. While
animating, the vertices of the interior polygon follow the vertices of the skeleton.

Mouth-3: A mouth consisting of an inside skeleton with four CPs and another exterior polygon. While ani-
mating, the vertices of the exterior polygon follow the vertices of the skeleton.

Eye: An eye with eyelids which can move up or down and a pupil which can move up, down, left and right.

In all those components animation parameters have meaningful names, like r_m_brow for the control point
in the middle of the right eyebrow.

3.7.6 User Defined Composite components

A user can define a library of components in addition to the ones provided by Face Editor. Such components
are called UserDefinedComposite components.

A UserDefinedComposite component is produced by making a drawing of it in Face Editor and then saving
it. This drawing consists of a collection of components generated in the usual ways (via IncludeComp or
IncludeScript). These components will be the subcomponents of the UserDefinedComposite. When used in
a drawing, UserDefinedComposites behave as any other component, they can be selected, edited, deleted
etc. as one single unit. This distinguishes them from included drawings (see IncludeScript) which add a
collection of separate components to the drawing.

There are two possibilities to create a UserDefinedComposite:

• Change the shape, color etc. of one already existing component, select the changed component and turn
it into a UserDefinedComposite by menu item SaveSelAsComp.

• Make a drawing consisting of more than one component and turn the whole into one single UserDe-
finedComposite using menu item SaveAllAsComp.

When saving, the user is asked for a name for the component via a standard file-dialog.

Including the UserDefinedComposite in a drawing is done by:

1) Select IncludeComp in Face Editor’s main menu.

2) Select the ‘UserDefinedComposite’ icon from the component selection menu.

3) The file-dialog which now appears shows the contents of subdirectory ‘UserDefinedComposite’ which
contains the UserDefinedComposites constructed so far. Select the desired component.

The drawing order of the subcomponents of the included UserDefinedComposite is the usual one deter-
mined by the order of their inclusion and their rank as given during their construction (see 3.5 for drawing
order and rank). This implies that UserDefinedComposites have an internal ranking of their subcomponents
which takes its effect relative to its overall ranking.

29

3.8. Component editing

When components have been included in a drawing they still have to be tailored to their desired shape, color
etc. This is done by editing them, using the main menu item Edit, which brings up a menu with edit opera-
tions applicable to the selected component. For every component type there is a set of allowed edit opera-
tions. This set is such that the restrictions on a component due to its type cannot be violated (e.g. a closed
component remains closed, an animated one animated etc.). While editing a component, the user has access
to an edit menu which contains only those edit operations which are permissible for that component.

!! The edit operations which work on points (e.g. DeleteControlPoints) can be efficiently repeated: After their
menu item has been chosen, the user can go on performing the operation on (other) points until another edit
operation is chosen.

!! Some edit operations involve clicking on edges (e.g. InsertFixedPoint). This does not work when drawing
with curves because then it is not seen where the edge is. In that case first switch to drawing components as
polygons (see Curve/Polygon Control), perform the edit operation and finally switch back to drawing
curves. Another trick is to insert points close to vertices and then drag them to the desired position. The user
could also guess where the (straight) edge would go and click there to insert a point.

Below we discuss all possible edit operations in alphabetic order

AddControlPointsToEnd: AddControlPointsToEnd is used to add a CP to the end of the polyline of an open
component. When this menu item has been chosen, a CP is created whenever the mouse button is clicked
with the cursor on one of the end-points of the polyline of the component. When the button is held down and

Figure 11. Example of the effect of some edit operations.

30

the mouse moved, the new point can be dragged to its desired position immediately. Thereafter the user can
set the control range of the new point by dragging the endpoints of the arms of its hairline cross.

See also: DeleteControlPoints, InsertFixedPoints, DeleteFixedPoints, AddFixedPointsToEnd, Insert-
ControlPoints.

AddFixedPointsToEnd: AddFixedPointsToEnd is used to add a FP to the end of the polyline of an open
component. When this menu item has been chosen, a FP is created whenever the mouse button is clicked
with the cursor on one of the end-points of the polyline of the component. When the button is held down and
the mouse moved, the new point can be dragged to its desired position immediately.

See also: DeleteControlPoints, InsertFixedPoints, DeleteFixedPoints, AddControlPointsToEnd,
InsertControlPoints.

CoupleControlPoints: CoupleControlPoints is used to assign leader/follower role to CPs. CPs can be cou-
pled to each other by mouse clicks. The user can choose a CP in the selected component and couple it to
another CP anywhere in the drawing. CoupleControlPoints provides the interface for this operation. It also
gives possibilities to visually inspect how CPs are coupled. Independent CPs (shown in green) and CPs who
are already leaders (shown in yellow) can be made followers of a (new) leader CP. If a leader is made fol-
lower of another leader the effect is that the first leader and its followers become followers of the new
leader. Followers (shown in gray) can only be made independent again. All kinds of CPs can be chosen as a
(new) leader: an independent CP, a CP which is a follower and a CP which already is a leader. When a CP
which already is a leader is chosen, it just gets additional followers, when an independent CP is chosen, it is
turned into a leader. When a follower is appointed as a leader, the effect is that the leader of that follower
will become the leader of the CP which should follow the selected CP (which itself is a follower).

To make a CP a follower, first click on it (it will light up in dark blue). In the dialog which appears (with
blue buttons), push Make. A new dialog with red buttons appears. Now select the candidate leader by click-
ing on a CP (it will light up in red). Another dialog will appear, this time with red buttons. When satisfied
with the selection , push the red Make button.

To make a follower (gray) independent, click on it. (It will light up in dark blue.) In the dialog which pops
up, push the Make button.

The dialogs discussed above also contain show buttons which give the possibility to find out what the fol-
lowers of a leader are and which CP is the leader of a selected follower. By checking the appropriate show
button, these leader or follower CPs will temporarily light up in a different color. So, when only inspecting
how CPs are coupled, use these show buttons and thereafter the Cancel buttons of the dialogs instead of the
Make.

!! Is is not possible to set the parameter name etc. of a follower CP; it inherits these properties from its leader.

!! Is is not possible to delete a component containing leaders because this could result in followers outside the
component ending up without a leader. If one wants to delete such a component, one first should make all
the followers independent of its leaders.

!! Is is not possible to save a component containing followers or leaders coupled to CPs outside it as a Used-
DefinedComposite component, because that would lead to followers without a leader or leaders without fol-
lowers in this UserDefinedComposite.

Curve_Polygon Control: The Curve_Polygon Control item produces a dialog box by which the user speci-
fies whether a (sub)component is drawn with a polygon or a (set of) spline(s) as outline.

First, there is a button which, when checked, leads to spline curves being drawn and when not checked, sig-
nals that the component is to be drawn as a polygon.

Next, there is a field in which the user can enter the distance (in pixels) between calculated points on the
splines. This is useful because when the object is drawn with splines, CharToon actually draws straight lines
connecting calculated points on those splines. So the distance field determines how smooth the drawn
curves will look.

31

Finally, there is the Set button. Through this button CharToon enters an edit mode in which the user can, by
clicking on polygon vertices, specify that connecting curves should brake on that point. (By clicking again,
a smooth curve through the vertex is obtained again). When this option is not used, the result will be one
single smooth curve through the objects vertices.

DeleteControlPoints: DeleteControlPoints is used to delete a CP somewhere on the contour of a polygon.
After menu item DeleteControlPoints has been chosen, a CP of the polygon (polyline) being edited is
deleted whenever the mouse button is clicked with the cursor on that point.

See also: InsertControlPoints, InsertFixedPoints, DeleteFixedPoints, AddFixedPointsToEnd, AddCon-
trolPointsToEnd.

DeleteFixedPoints: DeleteFixedPoints is used to delete a FP somewhere on the contour of a polygon.
When this menu item has been chosen, a FP of the polygon (polyline) being edited is deleted whenever the
mouse button is clicked with the cursor on that point.

See also: InsertFixedPoints, InsertControlPoints, DeleteControlPoints, AddFixedPointsToEnd, Add-
ControlPointsToEnd.

DragControlPoints: DragControlPoints is used to drag a CP somewhere on the contour of a polygon to a
different position. When this menu item has been chosen, a CP of the polygon (polyline) being edited is
dragged whenever the mouse button is pressed with the cursor on that point after which the mouse is moved
holding the button down. As an alternative, the user can move the control point by using the sliders which
are found in the dialog window which pops up after DragControlPoints has been selected. Finally, it is pos-
sible to continue dragging (other) control points in this way, as long as no other item form the edit menu is
selected.

See also: DragFixedPoints, DragBoundingPoints.

DragFixedPoints: DragFixedPoints is used to drag a FP somewhere on the contour of a polygon to a differ-
ent position. When this menu item has been chosen, a FP of the polygon (polyline) being edited is dragged
whenever the mouse button is pressed with the cursor on that point after which the mouse is moved holding
the button down. As an alternative, it is possible to move the FP by using the sliders which are found in the
dialog window which pops up after DragFixedPoints has been selected. Finally, one can continue dragging
(other) FPs in this way, as long as no other item form the edit menu is selected.

See also: DragControlPoints, DragBoundingPoints.

DragBoundingPoints: DragBoundingPoints is used to drag a FP or CP of the defining bounding-box of an
ellipse to a different position thereby changing the shape and size of the ellipse. When this menu item has
been chosen, a corner point of the bounding box can be grabbed and dragged by the mouse.

See also: DragFixedPoints, DragControlPoints.

DynamicScaleSpecs: When components are included through IncludeComp with the Animated Scale button
checked, they can be later dynamically scaled during animation. That means among other things, that when
the ‘.aprof’ file for a drawing which contains such a component is loaded in Animation Editor, there will be
‘staves’ to specify their time-varying x- and/or y- scale.

After DynamicScaleSpecs is selected a window pops up with:

1) Four sliders through which the x-scale upper limit, x-scale lower limit, y-scale upper limit and y-scale
lower limit can be set.

2) A text field in which the user can assign a parameter name to the scale. This name will be displayed in
Animation Editor adjacent to the particular scaling (in x and y direction) staves.

3) A button which, when pushed, produces a dialog box by which the user can set the Mpeg group attribute
(see later) of the scale parameters.

EditSelectedSubComponent: When a subcomponent of a composite component has been selected, the
user can start to edit this subcomponent by selecting EditSelectedSubComponent. (For an explanation, see
3.6.5.)

32

See also: SelectSubComponent, StopEditing.

FreezeFixedPoints: Through the FreezeFixedPoint item CharToon enters a state in which the user can, by
clicking on the vertices of the body polygon of a skeleton component, specify that they must be frozen, i.e.
that they cannot be dragged along by the skeleton. Through this device an object can for instance be created
which only moves one of its sides. (By clicking again, the point is made mobile again.)

InsertControlPoints: InsertControlPoints is used to insert a CP somewhere on the contour of a polygon.
When this menu item has been chosen, a CP is created whenever the mouse button is pressed with the cursor
somewhere on the contour of the polygon (polyline) currently being edited. When the button is held down
and the mouse moved, the new point can be dragged to its desired position immediately. Thereafter the user
can set the control range of the new point by dragging the endpoints of the arms of its hairline cross.

See also: DeleteControlPoints, InsertFixedPoints, DeleteFixedPoints, AddFixedPointsToEnd, AddCon-
trolPointsToEnd.

InsertFixedPoints: InsertFixedPoints is used to insert a FP somewhere on the contour of a polygon. When
this menu item has been chosen, a FP is created whenever the mouse button is pressed with the cursor some-
where on the contour of the polygon (polyline) currently being edited. When the button is held down and the
mouse moved, the new point can be dragged to its desired position immediately.

See also: DeleteFixedPoints, InsertControlPoints, DeleteControlPoints, AddFixedPointsToEnd, Add-
ControlPointsToEnd.

LabelControlPoints: A control point can be identified by a parameter name which is, among other things,
gets transmitted to Animation Editor where it shows up adjacent to the ‘staff’ by which the control point’s
time-varying value can be specified.

Initially, the parameter names have software generated rather obscure but unique values. Using LabelCon-
trolPoints the user can give them more meaningful values. After selecting LabelControlPoints he can
click on control points in the drawing. Then a window pops up in which he finds a field in which he can
enter a value for the name.

!! Although Face Editor accepts arbitrary long parameter names, the user is strongly advised to restrict herself
to 12 characters because Animation Editor uses only the first 12 characters of such a name.

LoadImage: When an ExternalImage component is created, it displays a default image. The user can
change this image by using LoadImage. When this menu item is selected, a file selection dialog will appear
from which the user selects the name of the image to load by either selecting a file in the Files list or by
explicitly entering a file name. The file should contain a ‘.gif’ image.

MpegGrpPERControlPoint: It is handy to be able to concentrate on groups of CPs when making anima-
tions in Animation Editor (see 6.4.1). The elements of a group can be shown/hidden together there, so even
when there are dozens of CPs the user can (when groups are used properly) easily see all points pertinent to
the nose, the mouth etc. In Face Editor the groups are to be chosen from the ones specified for faces in the
Mpeg4 standard. For drawings with many CPs, it is advised to group CPs according to these Mpeg catego-
ries even if the drawing is not of a face.

When MpegGrpPERControlPoints is activated, the user can thereafter select a CP by clicking on it. When that
is done, a window pops up, featuring a list of possible groups. The user assigns a group to the CP by double
clicking on an item of this list and thereafter pressing the OK button of this window.

See also: MpegGrpALLControlPoints, DynamicScaleSpecs.

MpegGrpALLControlPoints: Grouping CPs can be useful as discussed above.

When MpegALLControlPoints is selected, a window pops up, featuring a list of possible groups. The user
assigns a group to all CPs of this group, and recursively to those of its subcomponents, by double clicking
on an item of this list and thereafter pressing the OK button of this window. The group attribute of dynamic
scale and visibility parameters are also changed in the process.

See also: MpegGrpPERControlPoints, DynamicScaleSpecs.

33

Mirror vertical: When Mirror vertical is selected, the component is mirrored in the vertical direction
about a horizontal line through its origin.

See also: Mirror horizontal.

Mirror horizontal: When Mirror horizontal is selected, the component is mirrored in the horizontal direc-
tion about a vertical line through its origin.

See also: Mirror vertical.

SetControlRange: Control points can move independently in the x- and y direction. The range in which
their movement can be controlled by Animation Editor is indicated in a drawing by a hairline cross. (Ranges
are not taken into account in Face Editor’s test mode.) SetControlRange is used to change that range.

Changing the range involves the following steps:

1) Select SetControlRange.

2) Click on the CP whose range you want to change. A dialog box with four sliders, one for each arm of the
cross, will pop up.

3) In the drawing, drag the endpoints of the cross to their desired length or use the sliders in the dialog box.

4) Click anywhere in the drawing to signal that the range is ok.

5) If desired, repeat steps 2 - 4 for other control points.

Extras:

1) It is possible to restrict the control point’s movement to horizontal- or vertical motion only. To that end
use the Hor range allowed resp. Vert range allowed buttons. When such a button is checked, the corre-
sponding movement is allowed, otherwise it is not.

2) It is possible to force the CP to move in steps > 1. To that end the user should:

• Have the Adapt movement to step size button depressed.

• Enter values > 1 in the ‘Hor step size’ and/or ‘Vert step size’ fields.

It is also possible to have step sizes > 1 without having the Adapt movement to step size button depressed.
This feature is only useful for the generation of Animation Editor profiles. Those profiles will have granu-
larity > 1 but will allow parameter values in between those following from the granularity.

SetFillColor: SetFillColor displays a color selection tool through which the user can specify the color of
the interior of the component which is currently being edited.

In the color selector a color is selected either by:

1) clicking in the upper left hand square to select a color.

2) clicking in the face drawing to select a color which has already been used (this may take long).

3) fine-tuning the selected color by clicking in one of the two color strips on the right hand side.

4) using the sliders on the lower left hand side of the color selector.

5) clicking in the horizontal gray strip to select a shade of gray.

The selected color appears in the lower right hand square of the color selector. The background is actually
set to the selected color after pressing the Apply button. Terminate color selection by pressing the Stop but-
ton.

See also: SetPolyColor.

SetPolyColor: SetPolyColor displays a color selection tool through which the user can specify the color of
the enveloping polygon or curve of the component which is currently being edited. This color selection tool
is explained directly above.

See also: SetFillColor.

Scale: Scale is used to indicate that the selected component must be scaled to a different size. In order to
scale: select Scale and press and move the mouse.

34

During scaling a cross appears at the origin of the component. This cross also represents the origin of the
scaling transformation (Note: in this version of Face Editor it cannot be moved to another position. The
effect of scaling with respect to another origin can be mimicked by a combination of scaling and drawing).
Moving the mouse to the right or left enlarges resp. reduces the component in the horizontal direction. Mov-
ing the mouse up or down changes the vertical dimensions of the component.

SelectSubComponent: When the user wants to edit a subcomponent of a composite component, first he has
to select that subcomponent by clicking on one of its FPs or CPs or by clicking inside it. SelectSubCompo-
nent switches Face Editor to a state where such a selection can take place. (For details on selection, see
3.6.5)

See also: EditSelectedSubComponent.

Show_HidePolyEdge: When the Show_HidePolyEdge edit operation is chosen, it is possible to enforce for
every polygon edge or spline segment that it will or will not be displayed in Face Editor and in an animation.
Note: When a component is selected in Face Editor, edges (spline segments) that should not be displayed
are only highlighted a little; in FacePlayer they do not show up indeed. Switching between displaying or not
displaying an edge is done by mouse-clicking on it.

StopEditing: The StopEditing button ends the editing of this (sub)component. When the user stops while
editing a subcomponent, he ends up in the edit menu of the composite component containing this subcom-
ponent, otherwise editing stops totally. (For explanation see 3.6.5.)

Visibility Control: A drawing component can be either:

1) permanently visible (the default case).

2) permanently invisible (probably desired for skeletons of skeleton animated components).

3) visibility controlled (i.e. being switched on or off) during animation.

In case 3, when the ‘.aprof’ file for a drawing containing such a component is loaded into Animation Editor,
a ‘staff’ appears on which it can be specified at which times the component is invisible. This staff, just as the
others, is preceded by a parameter name which identifies it.

When Visibility Control is selected, a window pops up in which it is possible to specify the visibility
desired by checking a button and which has a text field where the user can specify the parameter name
shown in Animation Editor.

35

4. Face Player

4.1. Using Face Player

Face Player is used to show the effect of an animation on a drawing (of a face). It can be started in four dif-
ferent ways: integrated mode, stand alone mode, from Animation Editor and from Emotion Disc. Face
Player can be used for two different purposes: playing movies and showing snapshots.

• While playing movies it displays animation frames at a give frame-rate. It does so by obtaining a set of
animation parameters for every frame. This is what Face Player is used for in stand alone mode, but
playing (pieces of) the animation can be done too when Face Player was started in integrated mode or
from Animation Editor.

• Face Player has also special methods for accepting the animation parameters for one single frame and
displaying that frame. This so called snapshot mode is only accessible through Java code and can be
used when Face Player is started in integrated mode or from Animation Editor, or used from Emotion
Disc.

While playing a movie, Face Player can also be instructed to dump every animation frame as a ‘.gif’ file. In
doing so, the user can thereafter use movie editors like SGI’s Moviemaker or Adobe’s Premiere to construct
proper movies (e.g. QuickTime movies or movies in other formats) on the basis of these ‘.gif’ images.

For details on these possibilities, see the discussion of Face Player in stand-alone mode (see 4.2.4).

4.2. Ways to start up Face Player

Face Player can be started in four different ways: from integrated mode, form Animation Editor, from Emo-
tion Disc and stand-alone.

4.2.1 Integrated mode

In integrated mode, Face Player comes up together with Animation Editor and Face Editor. Integrated mode
is obtained by starting Animation Editor with the ‘-i’ option. In that case, the three components come up in
a way in which they work together in a setup which is suited for the interwoven development of a face and
an animation for it. In particular Face Player will show the face the user is currently developing in Face Edi-
tor and will play the animation which is being constructed in Animation Editor. For details see 2.1.

In integrated mode, Face Player comes up with four buttons: Play to start- or continue playing, Step to play
the next frame when Face Player has not yet been started or is in pause-mode, Pau to stop Face Player while
retaining its position in the movie being played and Rew to rewind the movie to its beginning.

4.2.2 Starting Face Player from Animation Editor

When Animation Editor operates in stand-alone mode and a profile has been loaded to which a valid (face)
drawing corresponds, Face Player can be started in order to show animations for that drawing (for details
see 6.2.2).

4.2.3 Starting Face Player from Emotion Disc

When Emotion Disc (see chapter 5) is started, a Face Player is automatically started showing the face which
was specified on the command-line for the startup of Emotion Disc.

4.2.4 Stand alone mode

In stand alone mode, Face Player can show movies of an animated face. In order to start Face Player stand
alone, go to the working directory and type

java FacePlayer -f facefile -s moviefile [-a soundfile] [-e enlargement]
[-d dumpfile] [-n] [-t]

Arguments:

36

-f facefile: This argument specifies the name of the face description, where facefile is a ‘.dat’
file (without the ‘.dat’ extension) to be specified relative to directory Faces. This argument must be present.

-s moviefile: This argument specifies the name of a movie, where moviefile is an ‘.amov’ file
(without the ‘.amov’ extension) to be specified relative to directory Movies. This argument must be present.

-a soundfile: This option specifies the name of a file containing instructions for audio to be played
in sync with the movie, where soundfile is a ‘.smov’ file (without the ‘.smov’ extension) to be specified
relative to directory Movies.

Note: The ‘.smov’ file itself contains the name(s) of actual audio files. For the time being, only Sun’s ‘.au’
files are accepted and hence the audio facility only works on Sun workstations.

-e enlargement: The -e option specifies that the frame has to be enlarged by factor enlarge-
ment before displaying it. enlargement is a decimal fraction >= 0.

-d dumpfile: The -d option instructs Face Player to dump every animation frame separately as a‘.gif’
file. The prefix of the filenames is dumpfile. The images are dumped as dumpfile0001.gif,
dumpfile0002.gif etc. They are placed in CharToon’s subdirectory AnimDump. Note: dumpfile
may also be a pathname relative to AnimDump.

-n: By default, Face Player tries to play animations in accordance with the prescribed frame-rate. Some-
times it does not succeed e.g. when the drawing is too complex or the system load is too high. In that case,
Face Player starts skipping frames in order to stay in sync. The -n option (No skip) inhibits frame skip-
ping; all frames are shown but possibly at a slower rate.

-t: By default, all components of a drawing execute in the same thread. (This does not hold for Face
Player’s timer and audio-player: they always run in threads of their own.). When the -t option is given, every
foreground component of a drawing executes in its own thread. This may be faster on parallel machines and
in any case it is a prerequisite when an animation must obtain its animation parameters from different
sources (e.g. in case of video-conferencing). In the last case, the code of Face Player should be extended.

Note: There is no option for the animation frame-rate. This is so, because a movie file itself tells Face Player
at which rate it has to be played.

In stand-alone mode, Face Player comes with a Start button to begin playing, Pause to suspend playing,
Continu to resume playing after a pause, SingleStep to show the next frame during pause or when not yet
started and Exit.

When Face Player has played an animation to the end a message dialog will appear telling so. This message
has to be acknowledged by pushing its OK button. While playing, Face Player will show the frame number of
the frame currently being displayed.

37

5. Emotion Disc

5.1. Principle and usage of the Emotion Disc

Emotion Disc gives a very direct way to animate a face mde by Face Editor by selecting expressions from a
pre-defined set of basic expressions or by automatically interpolating between those expressions. The user
directly selects a complete facial expression (i.e. a coherent set of values for all animation parameters) in
contrast to animating with Animation Editor where he must provide explicit values for the face’s animation
parameters separately. On the other hand, this set of basic expressions has to be constructed once for every
face and that is where Animation Editor has to be used.

Emotion Disc is based on the observation1 that (as a first approximation) emotional expressions can be
ordered in two dimensions: an intensity dimension and a dimension which orders the expressions according
to which emotion they express. Furthermore, the ordering on the second dimension is ‘circular’, and the cir-
cular order of emotions is: happiness-surprise-fear-sadness-anger-disgust-happiness. The claim is that
neighboring emotions correspond to expressions between which direct transitions (i.e. not going through a
neutral intermediate state) are possible.

Because of this, emotions can be represented in a circle; the radial dimension represents intensity (with zero
at the origin), the angular dimension represents the kind of emotion.

Emotion Disc is meant to display such a circle together with the corresponding face. When dragging the
mouse through the emotion circle, the expression on the animated face follows the position of the cursor
(see Plate 4.)

1. H. Schlosberg: The description of facial expressions in terms of two dimensions, Journal of Experimental Psychol-
ogy, Vol. 44. No. 4. 1952, pp 229-237.

Figure 12. An annotated Emotion Disc example, showing position of expression samples and possible
assignment of emotions. Expression sample positions are indicated by asterisks in the Surprise, Happiness

and Disgust segments. There are analogous sample positions in the other sectors which are not shown.

*
*

*
*

*
*

*

* *

Happiness

Disgust

Anger Sadness

Fear

Surprise

*
**

*
*
*

*
*

*
*

** * * * * * * * *

X

1 2
3 4

38

As seen in Figure 12, the disc is divided in sectors and tracks. Sectors correspond to different emotions,
tracks to intensity of emotion. The total number of regions equals the number of sectors multiplied by the
number of tracks. In every region there is a special point which corresponds to a predefined expression (see
Figure 12). Furthermore the neutral expression is associated with the centre of the disc. The expressions cor-
responding to all other points of the disc are found by locating the four special points surrounding the given
point and doing a bi-linear interpolation (in polar coordinates). Example: the expression corresponding to
position X in Figure 12. is calculated by interpolating between the parameters of sample points 1, 2, 3 and 4.

Emotion Disc configures itself for different faces, an adjustable nr. of tracks and an adjustable nr. of sectors.
What the disc and face will look like is determined upon startup by the content of the disc description
(‘.dsc’) file, which is produced by using Animation Editor and a conventional text editor. (For a detailed
description of ‘.dsc’ files, see Appendix 1.)

5.2. Running Emotion Disc

Emotion Disc either just shows the disc and the face or it can be started in a version intended for special test-
ing of the expressiveness of synthetic faces. In all cases, a usual profile and face file must be present under
EmotionDisc/Profiles and EmotionDisc/Faces. These files (as in case of CharToon in general) must have
identical names. Moreover, a disc file (with .dsc extension) must be present in the Discs subdirectory.

In order to start Emotion Disc, go to subdirectory Emotion Disc of the CharToon home directory and type:

java EmotionDisc -b disc-description-file or

java EmotionDisc -s disc-description-file stored-selection-file or

java EmotionDisc -p disc-description-file stored-selection-file.

With the -b (bare) option, the disc and the face come up without any control buttons. The disc just serves to
select expressions of the face if one drags or clicks in it.

With the -s (selection) flag the disc and face come up. Underneath the disc there is a button OK, volgende
foto (which means: ‘OK next picture’). When this button is pushed, the selected expression (actually just
the current mouse coordinates) is stored in stored-selection-file. (Showing the photos is out of
the range of Emotion Disc, can be done manually.)

With the -p (play) flag, the disc is not shown, but a window comes up containing button OK, volgende
expressie (which means: ‘OK, next expression’). By repeatedly pushing this button, the expressions stored
in stored-selection are shown one after the other.

In both cases, disc-description-file is the ‘.dsc’ file (without the ‘.dsc’ extension being typed)
discussed above.

39

6. Animation Editor

6.1. Basics

6.1.1 The principle of defining animations

An animation is defined by a number of time-varying animation parameters (APs). Defining an animation
means to define the values of some (possibly all) animation parameters through time. The AP values are
given by specifying the value at certain times - these are the knot points (KPs) of the AP. KPs are linearly
interpolated to compute the value of an AP in-between. If an AP has no value specified at a given time, then
a specific, so-called neutral value is assumed.

The animation profile, or shortly, profile defines the set of animation parameters which can be used to ani-
mate a face. The range and granularity of the allowed values as well as the name and eventual explanation
for each animation parameter are specified in the profile file (see Appendix 1.1 for details). Usually a profile
file is generated automatically by Face Editor. However, a profile file according to the required syntax can
be produced by a text editor too, and not only for CharToon faces.

In order to use the animation editor, it is sufficient to know that:

• an AP has a numerical identifier (ID) for identification and a name for ease of use,

• an AP can take either float or integer values between a minimum and a maximum value,

• there is a neutral value which usually corresponds to the parameter value in the neutral face,

• the set of allowed values can be either all values within the range or the interval is divided into equal
steps, and the value must be one of the resulting discrete values,

• an AP belongs to a group (such as eye, mouth etc., see Appendix 1.1 for the complete list).

An animation may have max. 100 APs and 1000 KPs per AP, and be max. 3 minutes long (the latter can be
redefined by setting options, see 6.8.2).

Normally, there is a single face with a given profile. However, it is sometimes useful to have many versions
of a face with identical profile, or to make different profiles for a single face.

Several profiles for a single face

This is useful while experimenting with different ways to animate a single face. Namely, driving a given
face with subsets of all the parameters defined in the face, or with the same parameters but (some of them)
with different ranges. In such cases, the user should open the single face in Face Editor, modify it by delet-
ing KPs and/or changing ranges, and save only the profile in Face Editor (see 3.6.1), but not the modified
face. Then, by using a text editor, he should add to the first line of this new profile the face name of the old
face. Face Player will be able to show an animation with the modified profiles on the unchanged face.

Several faces for a single profile

This is useful while experimenting with various versions of a face which are derived from the original one
without having touched the KPs and other control parameters (scale, visibility). Particularly, identical faces
with different rendering/background are such variants. In such cases, the user should open the single face in
Face Editor, modify it and save it under a new name. Then with a text editor a new version of the original
profile file is to be made, which differs only in the face name from the original. Then this profile file can be
used to animate the modified face with animations made for the original face.

6.1.2 Starting up Animation Editor in stand alone mode

Animation Editor can be started in a stand-alone way by the following command:

java AnimEdit [-f profilefile] [-w width] [-h height] [-l userlevel]

40

where profilefile is the path name of the profile file (without ‘.aprof’ extension) to be loaded, width
and height are integers specifying the size of the Animation Editor window in pixels, and userlevel
is the user level (see 2.3). No Face Player is started up automatically.

Animation Editor can be quit by the File/Quit menu item.

Animation Editor can be started up together with Face Editor in the so-called integrated mode too (see 2.1).

6.1.3 The Animation Editor window

The main window of Animation Editor is shown in Figure 13.

Figure 13. Snapshot of and Animation Editor window.

Face Player frame with buttonsknot points

an AP staffaudio play

cursor (in red)

selection start - endtime rulersound channels AP buttons

AP ID AP name

time marker (in blue)

41

The Animation Editor window contains the following regions:

1. time ruler;

2. sound buttons and editing panel for each sound channel, if a sound profile with some channels has been
loaded (either at start up if a Sounds/DefaultSoundProf.asprof was present, or later, by using the Sounds/
Load sound profile menu item);

3. AP buttons and staff for each parameter channel.

On the top, a menu bar can be seen with different pull-down menus. The window contains a title bar with
the name of the profile, the face and the animation being used.

The Help menu offers the Show help topics menu item, by which the user can get on-line help on a list of
topics. The on-line help for each topic is an abbreviated version of the corresponding manual pages.

6.2. Getting started to make an animation

6.2.1 Loading a profile

The user can load a profile by the File/Load profile menu item. The ascii file to be selected should contain
a syntactically correct animation profile definition (see Appendix 1.1 for details).

When Animation Editor is started with the -f profilefile option, the given profile file is loaded, oth-
erwise the profile in the ‘Profiles/DefaultProfile.aprof’ file is loaded. If at startup the loading of a profile file
fails or Animation Editor has been started up in integrated mode without the -f option, an empty profile is
generated. A special profile file uniqueidCurrent.aprof is used in integrated mode, containing the latest pro-
file generated from Face Editor by the SetCurrent button (see 3.6.1).

When a profile is loaded, a new (empty) animation is generated automatically, which can be 'filled' by inter-
active editing, or by loading a previously saved animation.

6.2.2 Seeing the animated face

In principle it is possible to compose an animation just working with Animation Editor, and play the anima-
tion later via movie script files. However, usually the user would like to see snapshots of the animated face
and try-out pieces of the animation being edited. To do so, he should start up Face Player by the Face/Show
Face Player menu item. Face Player will look for a face file under Faces at the relative path of the current
profile (under the directory Profiles), and the name specified by the profile (see Appendix 1.1 for more).

For completeness we mention that a ‘realistic’ 3D face model used at CWI (called Persona) can also be ani-
mated with Animation Editor, by the Face/Persona menu item. Persona should be started up first, maybe on
another machine, as long as the machine is specified through the Options/Set parameters menu item. For
socket communication, Animation Editor is using port 12345. Note that Persona is slow, so wait for the
effects to be shown.

When inserting or dragging a KP, in both cases the face will show the expression according to the current
time, taking into account all the APs (also the non-visible ones, see 6.4.1). The user can test an expression at
a given time by moving the cursor to the time ruler and making a snapshot with Mouse Right Press.

A piece of the animation can be played by pushing the control buttons of Face Player. The animation can be
played, paused, rewound and single frame steps can be made. Ways to select a part of the animation to be
played is discussed in 6.6.1.

!! Note that the playing speed may be slower than the intended one, especially if the face to be animated is big
and complex, and the machine is overloaded. Improve playing speed by taking a small size for the Face
Player window before it is started up. (This is possible only in non-integrated mode, see 6.9.2.)

42

6.2.3 Using the animation parameter staves

In the Animation Editor window there are parallel horizontal regions, one for each AP. The user can find
and look at specific AP staves by using the scroll bar on the right side.

!! If there are many AP staves, scrolling and refreshing the window may take long. The best way of scrolling is
to find the desired location roughly, by clicking below/above the vertical bar indicating the currently visible
portion, and then to locate the visible part precisely by dragging the ‘visible portion’ bar or clicking on the
up/down arrows in the scroll bar.

The order of displaying of APs is fixed, reflecting the order of APs in the profile file, and cannot be influ-
enced. But it is possible to restrict the shown APs to certain subsets by the Show AP menu, see 6.4.1.

On the very left, in the AP text button, the ID and the first characters of its name (altogether max. 15 charac-
ters) are shown. By pushing this button details on the AP are shown in an information window.

!! Note that APs are identified by the IDs, which are automatically generated by Face Editor. The ‘one_word’
AP names (given by the user in Face Editor) are useful to indicate the function of the AP. If the AP name has
not been specified, the default name generated by Face Editor will be shown. It is advised to set the AP
names in Face Editor for a face before starting to make animations. It is highly recommended to use short
(max 12 character) labels which follow some principle, e.g. using _l_ tag for “left”, “_t_” for top, “_o_” for
outer, etc.

Next to the AP text button there are 5 view buttons (from left to right) with the following functionality:

focus: add the AP to /remove the AP from the ones in focus (collective editing
operations effect only the APs in focus, see 6.4.2),

hide: hide the AP (hidden ones can be seen again via the Show AP menu item),

zoom out: shrink the staff height for the AP,

zoom in: magnify the staff height for the AP,

erase: erase everything from the AP staff.

The hide function is useful to concentrate on certain APs, and even to be able to save some channels only
(namely the shown ones) with a special menu item (see 6.3.1). Focus plays a role in selecting and editing
multiple APs.

The range of each AP is indicated in red if discrete values are allowed only, in blue if any value within the
range is allowed. Note that the minimum value is at the bottom of the staff and the maximum value is at the
top for each AP.

!! This is opposite to the direction of the co-ordinate system in Face Editor, so e.g. you have to increase the
upper eyelid position value to get the upper lid closed!

For each AP, to the right of the name of the AP and the buttons, a 'composition area', the animation parame-
ter staff is presented. This area consists of parallel lines, one of them in green. These lines aid the user in
specifying the value of the animation parameter at a given time, by setting/editing knot points. The green
line corresponds to the neutral value for the animation parameter. In the smallest (most zoomed out) size
there are two parallel lines, all KPs are placed between those, and thus only the time of KPs is indicated in
this view.

6.2.4 Creating a new animation

The user specifies values for an animation parameter by inserting KPs. To make a new animation from
scratch, click at different time locations in an AP staff to insert KPs. The value at in-between times is indi-
cated by the line connecting the KPs. You may test the animation you have just made by using Face Player,
see 6.2.2. You can alter your current animation by the local or global editing operations described in 6.5.

43

You may edit at any level of zooming. Mind that editing a ’zoomed out’ presentation may offer you rougher
granularity than the one defined for the AP. So for refined editing, use the maximum size (zoom in). The
rough presentations (zoom out) can be used for global editing operations (cut&paste, shift, scale) or as indi-
cations for the AP being edited.

6.3. Saving and loading animations

6.3.1 Saving an animation

The basic way to save the current animation is to save it as an ascii file:

File/Save animation saves the entire animation into an ascii file.

For more sophisticated usage, there are further possibilities:

File/Save.../Save shown saves the shown APs into an ascii file,

File/Save.../Save as object saves the entire animation as Java object, (Not recommended
unless for good reason by a GURU user.)

File/Save.../Save complete saves the profile and the entire animation into an ascii file.

Save shown is to be used to store animations for specific regions for the face (e.g. a blink), by showing first
only the appropriate APs. File/Save.../Save complete is to be used to archive an animation with the corre-
sponding profile. This option is recommended if the face and thus the profile is still being changed, but the
user wishes to re-use the animation later for the modified face (or a different face) by ’reanimate’ (see
6.3.3). Complete animations are recommended to be stored in the CompleteAnimations directory, and they
get .all extension.

In order to maintain profile and animation correspondence, it is recommended to use some file name con-
vention in the Animations directory (e.g. Profname_Aname_Version) and to create specific subdirectories.

We mention here that one can get a ‘printed staves’ of the animation, which may be useful for analysis/pre-
sentation purposes. This is to be done by the menu item:

File/Print prints the shown APs on paper, according to format specification
given in the Print Dialog by the user,

6.3.2 Loading an animation

An animation of the same profile as the current profile can be loaded by:

File/Load animation load an animation from an ascii file,

File/Load.../Load from object load an animation from a Java object file.

Both a (new) profile and an animation (saved earlier with Save complete) can be loaded by:

File/Load.../Load complete load a profile and an animation from an ascii file.

In this case from an ‘.all’ file both the profile and the animation are loaded, thus the problem of not knowing
(or even, having stored) the profile of a particular animation can be avoided.

When loading an animation, APs are identified by IDs. KP values eventually out of the allowed range (as
defined for the AP in the profile) are replaced by allowed min-max value for the AP in question.

6.3.3 Re-using earlier made animations by reanimate

An animation with a different profile than the current profile can be ‘reanimated’. The user is asked for the
‘.all’ file containing the animation to be reanimated, that is, to be re-used with the current profile. The user
is then asked to decide if reanimation should look for identical AP names or for identical IDs. If a matching
pair is found in the old and current profile, then the AP is bilinearly rescaled, by assigning the neutral, min
and max value of the old profile to the ones in the current profile. APs of the current profile for which no
matching old AP was found, remain empty. This service can be well used if AP names are generated in a

44

consequent way (e.g. having the ‘Mouth_R’ name for the mouth right corner parameters) and in case of
incremental extension/modification of faces (e.g. changing ranges, adding new APs).

Reanimation can be activated by:

File/Reanimate

Basically such a reanimation takes place when Animation Editor is used in integrated mode, and the face
has been changed and then from Face Editor the SetCurrent menu is activated. Then the current animation
is reanimated with respect to the changed profile, see 3.6.1. Again, the user may choose the way to find
matching APs.

6.3.4 Saving movie data

In order to make a movie to be played later by Face Player, an ‘.amov’ ascii movie file containing AP values
for each frame (see Appendix 1.4) has to be produced. To generate such a movie file, invoke one of the
menu items:

Movie/Full animation generates the specified movie file of the entire animation.

Movie/Selection writes the selection as movie into a movie file.

The user has to specify the sampling rate and number of digits used for parameter values, and give the name
of the output ‘.amov’ file.

!! Use 2-3 digits (the default is 3), especially if the drawing to be animated is small, to avoid jerky animation
due to rounding errors of the parameters.

The user can get a snapshot (one frame) of all AP values at a given time by positioning the mouse on the
required time in the time ruler, and clicking:

Mouse right press which updates the face if shown and writes the snapshot to the temporary
‘uniqueidSnapshotTest.amov’ movie file.

The produced ‘.amov’ movie files are ascii files, containing parameter values for the APs for each frame.
(see Appendix 1.4). Face Player and Persona can play such a movie file. Note that if the user wants to pro-
duce a video movie file (to be played by a media sw or video), the frames produced by Face Player (or Per-
sona) have to be dumped and a movie has to be made from the still images by using some sw.

There is no possibility to make a movie file of shown APs only. However, this can be achieved by making a
movie of part of an animation which was saved with File/Save.../Save shown. Another solution is to
select the APs of interest, and make a movie of the selection.

6.4. Changing the view, visibility and focus of APs

The full size of all AP staves may be large, resulting in the unpleasant situation that only a few APs can be
seen at a time in the window, and it is difficult to find the APs one is really interested in at a given moment.
There are different features to be used together to remedy such a situation:

• Change the view (size and granularity) of AP staves, by zooming in/out for each AP staff from an over-
view via small and medium view to the full size view by the zoom buttons aligned with the AP name.

• Hide APs which are not used at all in the given animation, or are not relevant in a current editing situa-
tion (e.g. for lip-sync the APs for the upper face should be hidden). Animation Editor provides means to
show earlier hidden APs again.

• Bring APs into focus, in order to restrict the effect of collective editing operations or testing the anima-
tion to these APs only.

6.4.1 Views and zooming

The user can zoom in/out for each AP staff from an overview via small and medium view to the full size
view and the other way around by the zoom buttons (third and fourth to the right of the AP name), see Fig-
ure 14. In the full view, a number of equidistant parallel lines are shown in the staff. The parameter interval

45

between the minimum and maximum value is divided into equal intervals, as many as the ‘granularity’ num-
ber given for the AP in the profile file (see Appendix 1.1), or 10 as default if no granularity is specified.
Depending on the type of the AP, also given in the profile file (see Appendix 1.1), only values correspond-
ing to the parallel lines are allowed, or other values between them too. In the latter case, the parallel lines
provide only visual aid to define values. In the first case, if the user clicks between lines, the nearest line will
give the intended value.

!! If the difference is big between the minimum and maximum values, define a larger granularity value, other-
wise the staff for the AU will be too big. This can be given in Face Editor when setting a control point’s
range, see 3.8.

In medium and small views, the number of lines is the same, but the distance between them is smaller.

In overview view, there are only two lines shown in the AP staff, and the KPs are placed aligned between
the two lines. Hence in this view only the time of the KPs can be seen.

Figure 14. Action parameter staves with overview, small, medium and full view.

For ‘detailed editing’, full view should be used, while for rough editing the medium view is sufficient. The
overview view can be handy for editing operations effecting a selection. It is also useful to show APs which
are taken into account (e.g. for synchronization) when editing a particular AP in full view. If all the APs are
shown in overview, the user can get an idea about the entire animation at a glance, without knowing the
details in each AP staff.

6.4.2 Hide/show APs

By the hide button (second button to the right of the name of the AP) the entire row for the AP gets hidden.
It is useful to have only the current few APs shown one is working on. Hidden staves are not shown for edit-
ing, but are taken into account when a snapshot is made. When playing the animation, all the APs are taken

46

into account, as long as no AP is in focus. (If there are APs in focus, testing the animation is restricted to
those.) A hidden AP remains in focus, if it was in focus when the hide button was pressed.

All but one of the Show AP menu items are to specify which APs are to be displayed. Besides one by one
selection and selecting all APs, it is possible to restrict the APs to be shown by groups. Namely, each AP
belongs to a group, as given in the profile file (see Appendix 1.1). If the group assignment was done prop-
erly, APs corresponding to a facial feature can be shown/hidden by selecting/deselecting their group. The
corresponding menu items are:

Show AP/Hide all all APs are hidden (handy if the user wants to see only a few of
them next),

Show AP/Show all all APs are shown,

Show AP/Show used all used APs - that is non-empty ones - are shown,

Show AP/Show some the user can select one by one hidden APs to be shown,

Show AP/Show groups a list is presented with the groups of APs to be selected from.

One menu item of the Show AP menu serves to turn all the shown APs into overview view:

Show AP/Overview all shown APs are to be displayed in overview view.

6.4.3 Focusing and selecting

The user can select a time slice of certain APs, and test or edit only those. The APs to be considered are
identified by ‘bringing them into focus’. The user can put in/remove from focus APs one by one by the
focus button for the AP. The focus button (first one to the right of the AP name) is shown in red if ‘checked’,
that is if the AP is in focus. The following menu items with shortcuts are useful to speed up focusing and
selection:

Select/Focus none CTRL+F removes all animation parameters from focus;

Select/Focus all used CTRL+SHIFT+D brings all used (non-empty) APs in focus,

Select/Focus all shown CTRL+SHIFT+N brings all shown APs in focus,

Select/Select all in focus CTRL+SHIFT+S selects the entire lengths of the APs in focus,

Select/Select range in focus CTRL+SHIFT+M selects the time interval of the APs in focus-
between the start and end marker (shown in
the ruler),

Select/Clear selection range CTRL+SHIFT+C clear selection range (nothing is selected).

For more information on selecting, see 6.6.2.

6.5. Editing an animation

In this chapter editing operations will be discussed, first those affecting a single KP, then those referring to
KPs in a single AP, finally the ones affecting focused APs. It is important to remember all the time that edit-
ing operations effect KPs. Hence there is no way to change a part of a time curve which does not contain at
least one KP. On the other hand, the change of a single KP does change the time curve between the preced-
ing and the following KPs.

In all cases, the latest editing operation can be undone by:

Edit/Undo CTRL+Z undoes the latest editing operation, including
the 'clear all' action.

When editing an animation with several APs, it is very much recommended to use the zoom, hide/show and
focus facilities. It is possible to perform all the editing operations in all zoom views. Dragging/inserting KPs
takes place on the level of granularity allowed by the view. If a piece is copied and pasted, even if done in a
rough view (e.g. overview), the original values are preserved. Refined editing of a single AP should be done
in full view, medium and small view could be used to sketch the animation. Overview should be used, first

47

of all, as reference when editing another AP. Overview is also handy when several APs are copied/pasted/
transformed.

6.5.1 Adding/deleting/moving KPs

A single animation parameter can be edited while the mouse is over the corresponding animation parameter
staff, by the following mouse actions:

Mouse Press insert a KP, if there was none; otherwise grab the one already at the
location,

Mouse Press + SHIFT delete the KP at the given location (if there is one there),

Mouse Press + CTRL start selecting,

Mouse Press + ALT paste earlier copied single AP part at current time,

Mouse Press + CTRL + SHIFT select/deselect the entire animation parameter,

Mouse Drag drag grabbed knot point (if one was grabbed),

Mouse Drag + CTRL select part of the animation parameter (selected part is shown in
red).

The AP staff is automatically scrolled when dragging a point or indicating a selection area with Mouse Drag
+ CTRL. Without mouse actions, the animation parameter staves can be scrolled by the scroll bars at the
bottom and on the right.

To clear an AP, use the button to the left of the animation parameter staff.

To clear the entire animation, use the Select/Focus all used, Select/Select all in focus and Select/
Clear selection range menu items.

6.5.2 Cut and paste within and among APs

The user can cut and copy a time slice of a single AP or of the APs in focus. The single paste operation takes
place if the cursor is in one of the AP staves, the multiple paste, referring to APs in focus, takes place if the
cursor is in the time ruler. For cut and copy, the latest selection is the target. There is a separate buffer to
store cut/copied single and multiple AP pieces, to be used when pasting in the single AP or the multiple AP
case. A copied or cut selection can be pasted. In the multiple APs case, the number of animation parameters
currently in focus should be the same as the number of copied animation parameters. If so, the animation
parameters are inserted ’parallel’, the first of the copied ones into the first of the ones in focus, etc. The time
of the insertion will be the time corresponding to the position of the cursor.

If there is a KP at the time of pasting, the value of the KP must be the same as that of the (identical) value of
the first and last KP to be pasted. This condition is checked for all of the APs to be pasted.

The copy/cut/paste actions can be invoked by the following menu items and shortcuts:

Edit/Cut CTRL+X cuts the selection;

Edit/Copy CTRL+C copies the selection;

Edit/Paste CTRL+P paste the latest copied AP(s) at the current time.

When inserting one animation parameter into another one with a different animation parameter profile, a
two-piece linear scaling is performed, making sure that the neutral, minimum and maximum values corre-
spond to each other. If a ’bi-directional’ animation parameter is inserted into a uni-directional one, one half
will be chopped (set to the neutral value).

A selection can be flipped, that is ’mirrored’ on the neutral value (green line). The Flip editing operation
performs a mirroring and a bi-linear re-scale, making sure that the flipped animation remains within range.
The user can paste the flipped version of the latest copied animation by the Paste with flip editing opera-
tion.

The flip operations can be invoked by the following menu items and shortcuts:

48

Edit/Flip CTRL+W ‘mirrors’ the selection on the line of the neutral
value, with re-scaling upper and lower parts,

Edit/Paste with flip CTRL+Q copies the flipped version of the latest copied AP(s).

6.5.3 Shifting and scaling selections

There are transformations which are defined on a selection. A selection is either a continuous interval of one
animation parameter (to be chosen as explained above), or a continuous time interval of the animation
parameters in focus (see 6.6.2).

The operations scale time, scale value, shift time, shift value are to be performed after a selection has been
made. Note that the current selection is either one produced by selecting a time interval of the animation
parameters in focus, or the last single animation parameter selection, whichever happened the latest.

The scaling and shifting transformations can be performed only if the 'natural' constraints will not be vio-
lated by performing the transformation, namely:

• knot points do not collide (along time),

• knot point values remain within allowed range,

• the length of the animation remains within maximum (for time scale up).

The corresponding menu items, with key shortcuts, are elements of the Edit menu. The scaling operations
use default or the latest user given scaling values (to be changed by Options/Set parameters).

Edit/Scale time down CTRL+T scales the selection‘s duration by a factor 0.8
(default), the first selected KP remains fixed,

Edit/Scale time up CTRL+T+SHIFT scales the selection’s duration by a factor 2.0
(default), the first selected KP remains fixed,

Edit/Scale value down CTRL+V scales the selection’s value by a factor 0.5 (default),
relative to neutral value,

Edit/Scale value up CTRL+V+SHIFT scales the selection’s value by a factor 1.25 (default),
relative to neutral value,

Edit/Move value up CTRL+U moves the KPs in the selection up with one step,

Edit/Move value down CTRL+D moves the KPs in the selection down with one step,

Edit/Move selection left CTRL+L moves the selection left with one time unit,

Edit/Move selection rightCTRL+R moves the selection right with one time unit.

The above transformations are not carried out if they would violate the above described constraints.

6.6. Using the time ruler

The ruler is at the top of an Animation Editor window, showing time in msecs, in 100 mseconds units. These
discrete units are 'enforced' by the editor, with the result that the control points all have n*100 mseconds as
time. The maximum time (the maximum length of an animation) is 180000 mseconds (can be changed by
setting parameters of Animation Editor, see 6.8.2). The time corresponding to the location of the cursor in
one of the animation parameter staves or in the time ruler is highlighted in red.

6.6.1 Ruler markers for playing and synchronization

In the ruler there can be markers in black and in blue (see Figure 15, Plate 5). The begin and end markers in
black indicate the begin and end of the selection or time slice of the animation being tested. That is, the por-
tion of the animation between the begin and end markers will be played by Face Player. The begin and end

49

markers are updated automatically to the begin-end of the animation whenever a KP is inserted before/after
the beginning or end of the current animation. The user may specify his own ‘interval of interest’ in one of
the following ways:

• drags the start or the end marker to a new position,

• specifies a selection with CTRL+Mouse Drag in the ruler region.

Figure 15. Markers in the time ruler.

As soon as the user has specified a selection range explicitly (see 6.6.2), it will not be updated automatically.
The latest user selected region of the time ruler is always highlighted in yellow. This can be cleared by:

 Select/Clear selection range

When an animation is played by Face Player, the cursor indicates the time of the frame being shown, and in
the ruler the play marker - a black square - is moving accordingly. If the playing is stopped by the Face
Player Pau button or because of reaching the end marker, then the play marker remains, to show where the
playing was suspended.

Synch markers - blue squares - can be added to the time ruler to remember special moments in time, e.g. for
synchronization. The following mouse operations are to be used:

Mouse Press add sync marker,

Mouse Press + SHIFT delete sync marker.

!! Note that by pushing the mouse at the same location in the ruler more than once, several ruler makers are
placed ‘on top of each other’, and all of them can be removed by an equal number of Mouse Press + SHIFT-
s at the location. However, do not insert multiple markers at the same location.

6.6.2 Selecting APs in focus

To be able to select parts of more than one animation parameter, the user can identify the ones of 'current
interest' by bringing those into focus (see 6.4.2). Then he can select a time interval of the APs in focus by
the following mouse operations in the time ruler:

Mouse Press + CTRL start selecting animation parameters in focus,

Mouse Drag + CTRL mark selection for all animation parameters in focus.

The selection is highlighted in yellow in each affected AP, the selected KPs and connecting curves are
turned red.

It is possible to mark a special time by setting a single time marker, and use it as reference for editing or for
selection. The time marker is a line in blue drawn through all the AP staves. The relevant mouse operations
are:

Mouse Press + ALT set time marker,

Mouse Press + ALT +SHIFT remove time marker, if there was one at the time of mouse press,

Mouse Press + CTRL+ALT select time slice between set time marker and the current time, and
re-set vertical time marker to current time.

The time marker is handy when one wants to select long time intervals.

synch markerstart marker play time marker (in blue) cursor (in red) end marker
set by the usermarkerset by the user

50

6.7. Working with multiple animations

Once Animation Editor has been started, it is possible to open further Animation Editor windows. This is
useful if the user wishes to copy into the current animation pieces from earlier made animations. Another
usage is when he wants to compare pieces of animations (usually, made for the same face).

Open a new frame and close one by the following menu items:

File/Open new window opens a new window, reading in the DefaultProfile.aprof profile,

Edit/Close this window closes the current window.

If by closing windows the number of windows is decreased to 0, then Animation Editor is quit automati-
cally.

The different windows behave as ‘independent’ Animation Editor windows. When a new window is
opened, it corresponds to starting up Animation Editor in stand alone mode, but with the same other options
as Animation Editor was started up initially. The windows can be identified by the window number shown
in the window title. The user may start up Face Player for each window.

6.8. Using sound

6.8.1 Adding sound

It is possible to prescribe multi-channel sound to accompany the animation and give play instructions. The
number of channels, audio files containing the sound for each channel and further information on each chan-
nel should be given in a ‘.asprof’ sound profile file (see Appendix 1.2). For each sound channel, sound
labels can be included in the ‘.asprof’ file, indicating e.g. vowels pronounced at certain time moments, or a
sudden noise. The sound labels are shown at the proper times in the sound play channels, and are meant to
be used for synchronization purposes while editing an animation. For defining the labels, see Appendix 1.2.
A sound profile file has to be prepared by hand, with a text editor, on the basis of e.g. the ascii file with
markers produced by the SGI soundtrack sw.

Once sound channels are present, the user can indicate by interactive editing (explained 6.8.2) when to
‘play’, ‘suspend’ and ‘restart’ the corresponding audio (see Figure 16). Channels with such play instructions
define the accompanying audio for the animation. All the channels with play instructions are stored/loaded
as Java objects.

The user can load/save a sound profile (containing the reference to a sound file and play instructions) by the
following menu items:

Sound/Load profile loads a sound profile (generate sound channels without play instructions),

Sound/Load from object loads a sound object (the sound profile is adjusted automatically),

Sound/Save as object saves the sound as object, for further re-use.

Face Player can play (in a hardware-dependent quality, at the moment of writing on Suns only) a movie with
sound play instructions recorded in a sound movie file (see Appendix 1.5).

Movie/Sound writes playing instructions frame by frame into ‘.asmov’ sound movie file
which can serve as an input for Face Player.

6.8.2 Sound play instructions

When the cursor is in the staff of a sound channel, play intervals per sound channel can be specified, starting
at the time of the cursor, by the following mouse events:

Mouse Press continue playing for 1 second (if not playing at the given time),

Mouse Press + ALT play from the beginning for 1 second (if not playing),

Mouse Press + SHIFT delete playing interval (the cursor must be over the interval),

51

Mouse Press + CTRL grab start/end of playing interval (if there is one at mouse location),

Mouse Drag + CTRL move start/end of playing interval.

In order to specify longer play times, add a 1 sec long play interval, and then adjust the endpoint. Some con-
sistency is maintained: you cannot add ‘continue’ if the last play interval terminated with ‘stop’. If a ‘start
play’ instruction is given at certain time, the termination of the previous interval will turn to stop automati-
cally.

!! The user can see if a play interval starts from the beginning or continues the previous one by looking at the
sign at the end of the previous interval: if it is filled, then the current interval plays from the beginning, oth-
erwise it continues.

!! It is not assured that the time intervals do not overlap. Overlapping play might result in suspending the
sound at the end of play intervals, so such situations should be avoided. When an interval is added or a play-
ing length is changed, the sound labels (if any) will be placed properly and shown in red. They are for infor-
mation, and cannot be edited in Animation Editor.

It is possible to clear all playing instructions by the clear button next to the name of the sound channel.

Figure 16. Two sound channels with play intervals given.

6.9. Tuning Animation Editor

6.9.1 Automatic backup generation

When Animation Editor is started up, a timer is started too and it is assured that periodically, after a certain
time interval, the so-called Autosave frequency, the current animation is saved into the Animations/user-
nameAnimationBackup.aanim file. If the system crashes, or unintended changes are made, or Animation Edi-
tor is quit without having saved the animation before, this file can be read in to restore the last saved status
of the animation.

6.9.2 Setting options

Via the Options/Set parameters menu the user can modify the following parameters (default values shown
in brackets):

Sampling rate in ms (40) the sampling rate offered when a movie is made,

Maximum animation length in ms (180000): the intended max length for the animation. If a loaded ani-
mation is longer, then its length will be the max length,

Autosave frequency in ms (600000): the current animation is saved with this time frequency,

Time upscaling rate default (1.25): time scale up operation will be done by this rate, which must
be at least 1,

Time downscaling rate default (0.8): time scale down operation will be done by this rate, which
must be between 0 and 1,

restart continue

labels to mark moments
in the audio channels

suspendstop

52

Value upscaling rate default (1.25): value scale up operation will be done by this rate, which
must be at least 1,

Value downscaling rate default (0.8): value scale down operation will be done by this rate, which
must be between 0 and 1.

Face Player window scale (0.4): The Face Player windows will be this fraction of the full
size. It is recommended to use a small fraction, otherwise
the window may take up the whole screen and the drawing
speed would be insufficient.

Machine on which Persona is running (localhost) To be used at CWI only, to open a socket between Persona
and Animation Editor.

53

6.10. Overview of keyboard shortcuts in Animation Editor

Focus and selection

Ctrl+F Focus none

Ctrl+Shift+D Focus all used

Ctrl+Shift+N Focus all shown

Ctrl+Shift+S Select all in focus

CTRL+SHIFT+M Selects the time interval between the start and end markers of the APs in focus.

CTRL+SHIFT+C Clear selection range (nothing is selected).

Editing while the mouse is in an AP staff

Ctrl+Z Undo

Ctrl+X Cut

Ctrl+C Copy

Ctrl+P Paste

Ctrl+W Flip

Ctrl+Q Paste with flip

Ctrl+Shift +T Scale time up

Ctrl+T Scale time down

Ctrl+Shift +V Scale value up

Ctrl+T Scale value down

Ctrl+U Move value up

Ctrl+D Move value up

Ctrl+L Move selection left

Ctrl+R Move selection right

Selecting and placing markers while the mouse is in the time ruler

Mouse Press + CTRL Start selecting animation parameters in focus

Mouse Drag + CTRL Mark selection for all animation parameters in focus

Mouse Press Insert synch marker

Mouse Press + SHIFT Delete synch marker

Mouse Press + ALT Set vertical time marker

Mouse Press + ALT +SHIFT Remove time marker, if there was one at the time of mouse press

Mouse Press + CTRL+ALT Select time slice between set vertical time marker and the current time

Editing sound

Mouse Press Play

Mouse Press + ALT Play from beginning

Mouse Press + SHIFT Delete playing interval

Mouse Press + CTRL Grab start/end of playing interval

Mouse Drag + CTRL Move start/end of playing interval

54

7. Implementational issues

7.1. General considerations

As already said, CharToon as a whole is implemented in Java. Our main reasons for choosing Java where:

1) The promise of problem-free portability between Unix-, Windows- and Macintosh platforms.

2) The possibility of producing animations for Web-applications: A Face Player in Java can be embedded in
Applets. In such a setup only animation parameters have to be transmitted, which for reasonable faces
animated at 25 frames per second amounts to about 15kB of data per second. So real-time animation via
the web is easily achievable.

Java (in its 1.1 version) did qualify for the task because:

1) Its interface and graphics tools (the AWK toolkit) where (just) sufficient.

2) There is support for multi-threading which opens the possibility of driving animations from multiple
sources which in its turn gives support for net based rendering of interactions between avatars where dif-
ferent avatars are controlled from different places but shown at the same place (think of video-conferenc-
ing!).

3) Experiments were done which demonstrated that a Face Player in Java was fast enough to animate a
drawing with some 40 CPs on a Sun Sparc Ultra at 25 frames/second. (Note: on a 400Mhz Wintel plat-
form which we use now, speed is still much higher)

7.2. Communication using ascii scripts

Face, movie and animation descriptions (‘.dat’ files, ‘.amov’ files etc.) could have been implemented as
serialized Java objects. We choose ascii descriptions because:

1) Working with ascii files keeps the way open for using CharToon with data from other non-Java sources
(e.g. driving Face Player directly with performer data instead of with movies produced by Animation Edi-
tor).

2) In the case of saved faces they turn out to result in faster save- and open operations then their Java-object
alternative. (For the other files we have no comparison, but io-speed is certainly not a problem.)

3) They can be understood by someone who knows how to read them (which is not so difficult. maybe with
the exception of ‘.dat’ files). This helps tremendously during debugging of a system under construction.

4) More often then not, serialized objects cannot be read in by a newer version of the system. This also holds
true (but in our case less frequently) for our ascii descriptions but those can be salvaged by simple text
editing. That way precious face-descriptions and animations survive system-modifications.

7.3. Face Editor and Face Player

The drawing components used by Face Editor are implemented as a carefully chosen hierarchy of Java
classes. They have the property that when they must be drawn, they have methods to draw themselves. This
class hierarchy serves a dual purpose: Face Player displays its drawings using the same set of classes. In
addition, the two programs share code for the instantiation of objects of those classes and for reading face
description (‘.dat’) files.

Face Player begins by instructing all components of a drawing to draw themselves in their neutral form
whereby if so desired, a separate thread is created for every foreground component. Next a timer is started
which executes a special method of Face Player at the desired frame-rate. This method instructs all fore-
ground components to redraw themselves. Before doing so, every component independently calls a method
of a specially provided ‘parameter obtainer’ class which returns the values of the animation parameters for
the animation frame at hand. Because of this independence and the ‘parameter obtainer’ class it is possible
to deal with different sources of animation parameters by using different ‘parameter obtainer’ classes
(which are not provided by the system as it is; they have to be tailor-made by coding them in Java). Cur-

55

rently, Face Player can play movies from a file, but is can also obtain parameters from a socket which is sup-
posed to provide (real time) performer data.

7.4. Emotion Disc

Emotion Disc is a Face Player surrounded by a layer which implements the disc. When Emotion Disc is
used for the selection of expressions, at every mouse event caused by dragging the mouse through the disc
the animation parameters corresponding to the current mouse position are transmitted to Face Player by a
call of its Snapshot method. The mouse position is stored in a file when the ‘OK’ button is pushed. When
Emotion Disc is used for playing a sequence of selected expressions, those recorded mouse positions are
read back, mapped to the corresponding animation parameters and transmitted to Face Player.

7.5. Animation Editor

Animation Editor is basically an interactive graphical editor. The staff for each AP is implemented as a sep-
arate canvas. These canvases are repainted one by one, in order to minimize the time spent on refreshing the
window.

7.6. Known problems

We have experienced that if Animation Editor or Face Editor has been running for a long time (>10 hours),
then sometimes the program crashed with the Java error of ‘Out of memory’. If a complex face and/or long
animation is to be dealt with, it is recommended to extend the memory assigned to the java Virtual Machine
before starting up CharToon. This is to be done by: java -mx64m AnimEdit

Repaint of windows may turn suddenly slow every now and then, probably as a side effect of Java’s garbage
collection.

Sometimes Animation Editor windows do not get repainted or updated when they should. An update/repaint
can be then forced by resizing/moving the window slightly.

Sometimes the Face Player window gets hidden behind the Animation Editor window. It should be clicked
at somewhere in its bounding frame or title to be shown again.

While Face Player (started up from Animation Editor) is playing an animation, the user should not move the
mouse over AP staves, as this results in many red cursor lines.

There is a bug on Windows systems: the on-line Help windows sometimes come up grey. Click on its right
side below the scroll bar (to perform a minor scroll) in order to get its content.

7.7. Reporting bugs

This manual documents the first release of CharToon. The user thus may encounter bugs, especially when
running CharToon under systems like MAC OS or Windows 98 with which we have not had experience.

We ask you to report any bug by sending an e-mail to: Han.Noot@cwi.nl.

In the e-mail you should include the description of the environment and the scenario (integrated or stand
alone mode, what has been edited,...), the anomaly, and all the error messages shown in the window where
CharToon was started.

Further releases with new features (e.g. handling of higher-level building blocks of animations and con-
straints) are to be expected.

Acknowledgments
We thank Zs. Paál, B. Kiers, A. Lelièvre, J. Hendrix, K. Thórisson for making some of the demos shown as
examples. We are indebted to Chris Thórisson for his ToonFace system, which inspired us to develop our
system, and for his many useful comments on earlier versions of CharToon. Finally, we thank Paul ten
Hagen for his useful comments on this manual and throughout the project. The work has been carried out as
part of the FASE project, sponsored by STW under nr. CWI 66.4088.

56

1. Appendix: CharToon’s file-formats and directories

1.1. .aprof profile file

Below, the expected syntax of the profile files (ascii files with .aprof extension) and the intended usage of
the profile parameters is explained.

When reading in a profile file, lines starting with // are not dealt with, and they may occur anywhere in the
file. The rest of a line after // will be ignored.

Parameters in the same line should be separated by at least one space (more allowed).

By n-th line we refer to the n-th non-comment line in the file. Below you find the DemoHead.aprof with
sample data, with the explanation as comment lines. Load this file into Animation Editor and check the dif-
ferent AP definitions. Realize the advantage of having granularity > 1 for large intervals of possible values.
Moreover, note the difference (in zoomed-in view) between APs with forced discrete values (e.g R_Head_x)
and with arbitrary integer values (e.g. T_Head_x). Note that the neutral value of dynamic scales is not nec-
essarily 1, but the middle of the min-max interval. Check the group ids.

// 1st line:

// PROFILE NAME Characters Max 20 chars

// To identify different profiles, roughly speaking one per model.

// FACE NAME Characters Max 20 chars OPTIONAL!

// To specify which face model file is to be used. If not given in the

// file, it will be assumed to be the same as PROFILE NAME. It can be

// useful with the Persona model.

DemoHead DemoHead

// 2nd line:

// NUMBER OF APs Integer Positive

13

// In the rest of the file, this number of AP description lines will

// follow.

1 -1 5 R_Head_x 0 -130 50 -40 18
2 -1 5 R_Head_y 0 -59 41 21 10
3 -1 10 T_Head_x 1 52 132 90 40
4 -1 10 T_Head_y 1 -343 -255 -259 22
5 -1 5 L_Head_x 0 85 315 225 23
6 -1 5 L_Head_y 0 -63 47 27 11
7 -1 3 R_Eye_x 1 -12 52 29 64
8 -1 3 R_Eye_y 1 -61 21 -20 82
9 -1 3 L_Eye_x 1 -12 52 29 64
10 -1 3 L_Eye_y 1 -61 21 -20 82
11 -1 6 Mouth_Loc_x 1 320 440 390 12
12 -1 6 Mouth_Scale_x 3 0.5 3.0 1.75 0
13 -1 6 Mouth_Scale_y 3 0.0 4.0 2.0 0

// 3rd, 4th,....15th line (total: NUMBER OF APs+2 lines):

// each such line has values for the following parameters:

// ID FACSID GRID AP NAME TYPE MIN_VAL MAX_VAL NEU_VAL GRAN SCALE COMM.

// ID Integer 0=<ID=<1000

// To identify the animation parameter within the profile.

57

// FACSID Integer 0=<ID=<1000

// The ID used for reference to MPEG or other AU sets, -1 as default

// (not used in CharToon).

// GRID Integer 0=<ID=<19 OPTIONAL!

// The ID of the group the AU belongs to, 0 as default.

// The following group ids are to be used (FaceEditor offers these):

//nr name comment

//0 misc default if no grouping is to be used

//1 eyebrows & forehead

//2 eyelids

//3 eyeballs, pupils

//4 nose

//5 cheek

//6 mouth

//7 jaw

//8 tongue

//9 ears

//10 head

//11 neck

//12 hair

//13 more facial features features for which 1-12 do not apply

//14 moustaches

//15 tears

//16 glasses

//17 face objects1 (e.g. cap, earrings)

//18 face objects2 (e.g. tie,...)

//19 non-face objects (e.g. backgrounds)

// AP NAME Characters Max 12 non-space chars

// To show to the user (usually NOT to identify the AP, except with

// “reanimate”)

// TYPE Integer 0,1,2,3

// 0: the value should be an integer according to the given granularity

// (discrete values)

// 1: the value should be an integer within the extreme values

// 2: the value should be a float according to the given granularity

// 3: the value should be a float within the extreme values

//

// MIN_VAL Float ####.&&&

// Minimum value, integers without decimal point and only decimals

// are OK too

58

// MAX_VAL Float ####.&&&

// maximum value, integers without decimal point and only decimals are

// OK too

// NEU_VAL Float ####.&&&

// neutral value, integers without decimal point and only decimals are

// OK too

// GRAN Integer 0=<GRAN

// The [MIN_VALUE, MAX_VALUE] interval is divided into GRAN equal

// parts. The value of the AU should be one of the GRAN+1 division

// values. The NEU VALUE should be one of these values.

// Depending on TYPE, the GRAN is compulsory (TYPE 0,2) or

// will be used initially, but can be refined later by the user.

// GRAN=0 will result in no discretisation at all.

// SCALE Float or Integer 1

// Optional, for later use, now skip or give 1.

// COMMENT String

// Short explanation of the effect of the AU (optional).

1.2. .asprof sound profile file

The sound ascii file is used to store .au file reference and annotations (made by AnimEdit or a text editor).

Below is the Demo.asprof file, with data for a single sound channel and comment lines starting with //.

// Name of the sound profile

Default_Sound_1

// Sound profile with 1 sound channel

// First row: the number of sound channels

1

// Then for each sound channel a row, each followed by row(s) for the
markers (if any).

// ID name_of_Chan sound_file dur. (ms) nofMarkers comment(optional)

1 DonGiovanni "DonGiovanni.au" 6000 2 "something as com-
ment"

// if nofMarkers>0, then for each marker in a separate row

// time (in mseconds) and label (string)

500 "blink"

1500 "look_up_end"

1.3. .dat face file

The ‘.dat’ files (face files) describe faces as constructed by Face Editor. By default. they are found in Char-
Toon-home-directory/Faces. UserDefinedComposite components are also stored in files with the ‘.dat’
extension. Those files are basically subsets of face description files; they will not be discussed separately
here. By default, they are to be found in CharToon-home-directory/UserDefinedComposite.

The format of a ‘.dat’ file is:

59

background-color width-of-drawing height-of-drawing

comp-spec

.

.

comp-spec

Below we discuss the contents of ‘.dat’ files in a form which loosely resembles a grammatical description.
Note: For the grammatical alternative we use the symbol ‘!’ instead of the usual ‘|’. Syntactical catagories
are -as usual- enclosed between ‘<‘ and ‘>’ All other symbols are literals including the ‘|’ symbol which
does NOT have the usual meaning of grammatical alternative; it is a character which actually occurs in
‘.dat’ files.

There is a comp_spec line for every drawing-component. These lines have different format for different
component types; <comp_spec> can be <b_comp_spec>, <c_comp_spec> or
<usd_comp_spec> for basic components, composite components or UserDefinedComposite compo-
nents respectively. They all begin with a <global_properties> part but they end different for differ-
ent kinds of components.

<b_comp_spec>=<global_properties>|<nr_of_points>|‘nr-of-points’<pointspec>s

<c_comp_spec = <global_properties> | 0 | a-component-dependent-nr-of <b_comp_spec>s

<usd_comp_spec>=<global_properties>|<nr_of_comps>|’nr-of-comps’ <comp_spec>s

<global_properties>=<name>|<visibility>|<backgr_and_layer>|<spline_or_
poly>|<origin>|<colors>|<dynscale>

<name>= A name by which this component is known to the system e.g. ‘FixedClosedFilledPoly’

<visibility>=0!1!2|<parameter_id>|<parameter_name>|<mpeg_group>

Here, 0 indicates that the component is permanently invisible (used for skeletons), 1 that it is permanently
visible and 2 that its visibility can be dynamically switched on or off. <parameter_id> is a unique inte-
ger identifying this animation parameter, <parameter_name> is a string (the same one which shows up
in Animation Editor next to this animation parameter and <mpeg_group> is again an integer.

<backgr_and_layer>=0!1|<integer between 0 and 9 >

Here 0 signals a foreground- and 1 a background component while the <integer between 0 and 9>
denotes the component’s rank.

<spline_or_poly>=0!1|<distance>

Here 0 indicates that the component is drawn as a polygon or polyline, 1 that it is drawn with a curved out-
line. <distance> is an integer specifying the distance in pixels between calculated points on the curve.
Iin the case of a polygon it has value 0.

<origin>=<controlpoint_spec>

The data describing the <origin> of the component have the form of a <controlpoint_spec> (see
below). When we have an animated origin, all 17 fields of this specification are relevant, otherwise only the
x- and y- fields are significant although the other fields are present too.

<colors>=<poly_or_spline_color>|<fill_color>

In the colors specification there are two integers each specifying a color. The integers have values repre-
senting three bytes for the RGB components of the color.

60

<dynscale>=0!1|<x_parameter_id>|<y_parameter_id>|<parameter_name>|<min_x
_fact>|<max_x_fact>|<min_y_fact>|<max_y_fact>|<mpeg_group>|<neut_x_fact
>|<neut_y_fact>

Here 0 indicates that the object is not dynamically scalable, 1 that it is. Only in the later case all the other
fields are relevant, but they are always there. First, we have to unique id-s (integers) identifying the anima-
tion parameters for scaling in the x- and y-direction. Then comes a parameter name (a string) which is
shown in Animation Editor to identify the parameters. Finally we have 7 integers defining minimum, maxi-
mum and neutral values for the scale parameters and the mpeg-group associated with this parameter.

The last element to discuss is the <point_spec>s part of <b_comp_spec>:

point_spec= <fixedpoint_spec>!<controlpoint_spec>

fixedpoint_spec = <f!z><+!-!&!*>|<x>|<y>|

Here, f indicates a FP, z a frozen FP of a body polygon. A ‘+’ indicates a spline boundary where the fol-
lowing spline segment is really drawn, a & indicates a spline boundary followed by a spline which is not
shown, while & and - indicate continuation of the spline in a shown - resp. not shown outline. <x> and <y>
are integers specifying the point’s position.

<controlpoint_spec>=c<+!-&!*>|<x>|<y>|<tx>|<ty>|<bx>|<by>|<lx>|<ly>|<rx>
|<ry>|<parameter_name>|0!1|0!1|<x_parameter_id>|<y_parameter_id>|<x_ste
p>|<y_step>|<mpeg_group>

The meaning of most of the elements of <controlpoint_spec> can be deduced from their names and
the discussion of other elements above. The new ones are:

1) The integers <tx>...<ly> specifying the coordinates of the controlpoint’s hairline top-, bottom-,
left- and right endpoints.

2) The two 0!1 fields which tell whether the point cannot- or can move in the x-, resp y- direction.

3) The integer <xstep>- and <ystep> fields which specify the step (in pixels) by which the controlpoint
may move.

Example of a part of the ‘.dat’ file for the Chicken shown in Plate 1.

16776960 1000 970

FixedFilledEllipse|1|-1|Visibility|0|0|7|0|10|490|423|0|0|0|0|0|0|0|0|
FixedFilledEllipse1:Ctrl0|0|0|0|0|1|1|0|0|8684676|16579836|0|null|1|2|
0.0|2.0|0.0|2.0|0|0|0|5|f-|-70|-66|f-|70|-66|f-|70|66|f-|-70|66|f-|-70
|-66

FixedFilledEllipse|1|-1|Visibility|0|0|8|0|10|397|423|0|0|0|0|0|0|0|0|
FixedFilledEllipse1:Ctrl0|0|0|0|0|1|1|0|0|8684676|16514043|0|null|1|2|
0.0|2.0|0.0|2.0|0|0|0|5|f-|-82|-78|f-|82|-78|f-|82|78|f-|-82|78|f-|-82
|-78

AnimatedFilledEllipse|1|-1|Visibility|0|0|9|0|10|421|427|421|412|421|4
42|406|427|436|427|Pupil-pos-R|1|1|1|2|1|1|0|1|263172|460551|1|Animate
dFilledEllipse1:Scale1|3|4|0.0|2.0|0.0|2.0|0|0|0|5|f-|-16|-18|f-|16|-1
8|c-|16|18|16|3|16|44|-10|18|37|18|Pupil-size-R|1|1|5|6|1|1|0|f-|-16|1
8|f-|-16|-18

AnimatedFilledEllipse|1|-1|Visibility|0|0|9|0|10|516|432|516|417|516|4
47|501|432|531|432|Pupil-pos-L|1|1|7|8|1|1|0|1|263172|460551|1|Animate
dFilledEllipse1:Scale1|9|10|0.0|2.0|0.0|2.0|0|0|0|5|f-|-13|-15|f-|13|-
15|c-|13|15|13|-10|13|42|-10|15|35|15|Pupil-size-L|1|1|11|12|1|1|0|f-|
-13|15|f-|-13|-15

SkeletonPointsAnimatedClosed|1|1|Visibility|0|0|5|0|10|394|370|0|0|0|0
|0|0|0|0|SkeletonPointsAnimatedClosed1:Ctrl0|0|0|0|0|1|1|0|0|0|1671193
5|0|null|11|12|0.0|2.0|0.0|2.0|0|0|0|0|ClosedFilledBodyPoly|1|1|Visibi

61

lity|0|0|0|0|10|364|224|0|0|0|0|0|0|0|0|SkeletonPointsAnimatedClosed1B
odyPoly:Ctrl0|0|0|0|0|1|1|0|0|14038047|14371908|0|null|0|0|0.0|2.0|0.0
|2.0|0|0|0|43|z-|-65|501|f-|-75|447|f-|-79|414|f-|-84|375|f-|-97|323|f
-|-113|283|f-|-168|299|f-|-217|285|f-

etc.

1.4. .amov movie file

Below the beginning of the DemoMovie.amov file is listed, with explanation in comment lines starting with
//. The movie was made of the animation in the DemoAnimation.aanim file. Here only the lines for the first
10 frames are given.

// name of the animation
DemoAnimation
// name of the profile
DemoHead
// nof APs
13
// ID of all APs for which value is given (in this order) for each frame
1 2 3 4 5 6 7 8 9 10 11 12 13
//sampling frequency in ms
40
// nof frames
51
// for each frame: time (in msecs), followed by a line with the AP values
0
-40 21 90 -260 215 27 29 -20 29 -20 390 1.250 0.933
40
-30 21 90 -277 205 27 29 -29 29 -29 390 1.100 0.960
80
-20 21 90 -293 195 27 29 -37 29 -37 390 0.950 0.987
120
-20 21 90 -310 185 27 29 -45 29 -45 390 0.800 1.013
160
-10 21 90 -326 175 27 29 -53 29 -53 390 0.650 1.040
200
0 21 90 -343 165 27 29 -61 29 -61 390 0.500 1.067
240
-10 21 90 -326 175 27 29 -53 29 -53 390 0.700 1.067
280
-20 21 90 -309 195 27 29 -45 29 -45 390 0.900 1.067
320
-20 21 90 -293 205 27 29 -36 29 -36 390 1.100 1.067
360
-30 21 90 -276 225 27 29 -28 29 -28 390 1.300 1.067

...

1.5. .smov sound file

Below the beginning of the DemoSound.smov file is listed, with explanation in comment lines starting with
//. The sound movie was made of the sound play instructions in the DemoSound.osound file, for the Demo-
Sound.asprof sound profile (1 sound channel). Below data for the first 6 frames is given.

// name of the sound
Sound for DemoAnimation

62

// Nof used channels
1
// audio file for each used channel
"DonGiovanni.au"
//sampling frequency in ms
40
// nof frames
51
// for each frame two lines: time (in msecs) and then an integer:
// 0 silent
// 1 keep playing
// 2 play from start (first, or after last stop)
// 3 continue (after pause)
// 4 stop
// 5 pause
0
2
40
1
80
1
120
1
160
1
200
1

...

1.6. .aanim animation file

Below you find the DemoAnimation.aanim file, containing comment lines starting with // explaining the
syntax.

// name of the animation, a complete line of characters

Animation with 10 APs

// name of the profile the animation was made for

DemoHead

// number of all APs with some KP

10

// for each AP with KPs two lines:

// ID of included AP and number of KPs, followed by time-value list for

// each used AP

1 3
0 -40.00 200 0.00 400 -40.00
4 3
0 -260.00 200 -343.00 400 -259.00
5 3
0 215.00 200 165.00 400 235.00
7 3
500 28.00 800 43.00 1000 29.00

63

8 6
0 -20.49 200 -61.00 400 -20.00 1600 -19.00 1900 -31.00 2000 -19.00
9 3
500 28.00 800 18.00 1000 29.00
10 6
0 -20.49 200 -61.00 400 -20.00 1600 -20.00 1900 -34.00 2000 -20.00
11 7
500 397.00 800 437.00 1000 407.00 1200 390.00 1300 417.00 1500 417.00 1600
380.00
12 14
0 1.25 200 0.50 400 1.50 900 1.67 1000 1.00 1100 2.00 1200 1.42 1300 2.00
1400 1.67 1500 1.08 1600 2.25 1700 1.50 1800 1.08 2000 0.75
13 14
0 0.93 200 1.07 400 1.07 900 0.80 1000 1.87 1100 0.67 1200 1.33 1300 1.60
1400 0.67 1500 1.73 1600 0.67 1700 1.33 1800 2.27 2000 2.67

1.7. .dsc disc file

Emotion Disc’s actual configuration is determined by the content of a ‘.dsc’ file, found in CharToon-home-
directory/EmotionDisc/Discs.

An example of such a file is given below:

//Name of profile

B_maan

//Name of Face

B_maan

//Nr of emotions

6

//Nr of snapshots per emotion (animation)

10

//Nr of used AUs

16

//AUs

53 54 55 56 58 75 76 77 78 80 83 84 81 82 85 86

//Joy

339 220 22 -19 -1 514 220 -22 -19 -1 -36 -38 33 -20 107 -41

339 220 22 -20 -2 514 220 -22 -20 -2 -39 -41 33 -20 110 -44

339 220 22 -20 -2 514 220 -22 -20 -2 -41 -44 33 -20 112 -47

339 220 22 -21 -3 514 220 -22 -21 -3 -44 -47 33 -21 115 -50

339 220 22 -21 -3 514 220 -22 -21 -4 -46 -50 33 -21 118 -53

339 220 22 -22 -4 514 220 -21 -22 -4 -49 -52 33 -21 120 -55

339 220 22 -22 -4 514 220 -21 -22 -5 -51 -55 33 -21 123 -58

339 220 22 -23 -5 514 220 -21 -23 -6 -54 -58 33 -22 126 -61

339 220 22 -23 -5 514 220 -21 -23 -6 -56 -61 33 -22 128 -64

339 220 22 -24 -6 514 220 -21 -24 -7 -59 -64 33 -22 131 -67

//Disgust

64

339 220 22 -19 -1 514 220 -22 -19 -1 -36 -38 33 -20 107 -41

....

etc.

Explanation:

A ‘.dsc’ file is made largely ‘by hand’ using a general purpose text editor together with Animation Editor. It
begins (apart from comment lines) with the name of a profile (‘.aprof’) file for the face being animated. This
name is given without the ‘.aprof’ extension. The file is to be found in CharToon-home-directory/Emotion-
Disc/Profiles.

Next comes the name of the face file (‘.dat’ file) for the face. This name is given without the ‘.dat’ exten-
sion. The file is to be found in CharToon-home-directory/EmotionDisc/Faces.

Next come the number of emotions followed by the number of snapshots per emotion. These two numbers
correspond to the number of disc-sections resp. the number of disc-tracs + 1.

Expression-samples are passed to Emotion Disc in the form of movie file lines (‘.amov’ files). For every
emotion (disc segment) there is a set of animation parameter specification lines, where there is one more
line then the number of disc tracks. The first line of the set corresponds to the definition of the neutral
expression (centre of disc), the next one to a very weak display of the emotion (track closest to disc centre)
and finally the last line to the strongest expression of the emotion (outermost track). In the example ‘.dsc’
file we see the lines for ‘Nr of used AUs’, AUs’ and these expression definition lines (first those for Joy,
then for Disgust, the other emotions are not shown). For a detailed understanding of the contents of these
lines, the user should read the section on ‘.amov’ files in this Appendix.

It is suggested to produce the expression samples as follows: Start Animation Editor and load the profile for
the face involved. Next choose the first emotion on the disc (in this case ‘Joy’) and produce an animation
from neutral to maximum intensity for that emotion. When done, save this animation as a movie, thereby
using such a sampling rate that the number of frames in the movie equals the number of samples (snapshots)
one wants for the disc (in this case: 10). Next, use a text editor to extract the relevant part from the movie
file (i.e. remove its header) and add the result to the .dsc file being constructed. Repeat this process for all
emotions which have to be represented by its incarnation of the disc.

65

2. Appendix: List of demo faces and animations

The files are provided with the CharToon release in the Demo subdirs of directories Faces, Animations, etc.

Face APs Description Animations Movies Disc

DemoHead 13 Simple head to show basic control param-
eters

DemoAnimation DemoMovie -

Generic 46 A ‘generic’ face, made for MPEG data
driven animation especially

- marcgen,
janroelgen,
andregen,
frontgen

-

Chaplin 22 The very first head made by earlier ver-
sion of CharToon

- - -

ChaplinMpegVert 32 Chaplin with (vertical) Mpeg parameters,
used with performer data

- - -

Gerard 58 Subtle cartoon face of a real person - - Gerard

Frans 54 Cartoon face of a real person with text
panels

Frans - -

Mary 32 Face with hidden tears, animation with
post-processed performer data

Mary - -

Lily 93 Subtle artistic cartoon face which can
change shape too

Lily (face is not
shown initially!)

- -

NineFaces 104 Nine human and other small faces in a
panel, each with a few control parameters

NineFaces - -

Lineheads 28 To experiment with line drawing style and
’turning heads’ effect

Lineheads - -

Han 61 A cartoonish head with moving stars Han - -

JanReal 44 ‘Realistic’ head of Janroel (real person) - JanReal -

JanCart 58 Cartoonish head of Janroel - JanCart -

Bold 14 Cartoonish bold head, made of predefined
components

- Bold -

Santa 24 Santa Claus Santa - -

Prof 19 Simple head in profile view Prof - -

ProfPlus 25 Subtle head in profile view - - -

Sandy 74 Simple face used with emotion disc
experiments

- - Sandy

Maan 32 Moon head - - Maan

Egghead 32 The first head made by artist Egghead - -

Skull 2 Skull with moving jaw - - -

Chicken 20 Crowing chicken-head in half profile Chicken - -

Moose 39 A moose with an animated story Moose

Peer 24 Peer head - Peer

Scenery 13 To imitate 3d effect and rotational motion Scenery Scenery -

Lambda 28 A full body figure (known at CWI) Lambda

Joke 14 A joke with bicycle & special effects Joke - -

Painting 12 Painting which can be animated Painting

66

67

3. Appendix: Color plates

Plate 1. Face Editor. Left: Main menu. Middle: A face. Right: Pop-up edit menu.

Plate 2.b. The same linehead with
its components, fixed points and

control points shown.

Plate 2.a. A linehead

68

Plate 3.a. Lily with skeletons shown. Plate 3.b. Lily with fixed points and
control points shown.

Plate 4. Emotion Disc and the face Maan in Face Player. Face Player show the expression corre-
sponding to the cursor position in the disc.

69

Plate 5. An Animation Editor window, with some parameters in focus, and part of the animation of those
selected. Face Player is showing the face to be animated (DemoHead), with an expression corresponding to

the cursor position.

Plate 6. Lily.

Plate 7. NineFaces.

70

Plate 9. JanCart. Plate 8. JanReal.

Plate 10. Lineheads. Plate 11. ProfPlus.

Plate 13. Scenery.

Plate 12. Moose.

